Baseline Testing

Gene Michael Stover Jay F. Smith

created Tuesday, 7 October 2003
updated Sunday, 12 October 2003

Copyright © 2003 by Gene Michael Stover & Jay F. Smith. All rights reserved.

Contents

1 Conclusion 3

Jay: Is my use of “test case” correct? How about “test harness”? I haven’t
inserted section headers yet. Thought it’d be better to flesh out the prose € see
what organization it takes before inserting them.

You want to automate some of your testing? Baseline testing is a simple
technique that handles many testing situations.

With baseline testing, you start with an input/output pair that are known
correct. The output part of the pair is called the baseline. To perform the
test, you send the input data through the System Under Test (SUT) & compare
its output with the baseline. With some predefined & expected exceptions,
any differences are suspicious; those differences are probably errors & must be
investigated.

Jay: Will the telcos sue us for telling the world about the existence of switches
in this example?

Here is a simple example: The SUT is an application that coalesces the
records from wireless telephony switches & produces per-call records that are
more easily processed by a billing system. (The computers which control the
wireless telephony network are called switches, & they produce highly detailed
records of activity, usually with more than one record for what a billing system
would consider a single call.) For your test, your input file contains real switch
records, selected & arranged to test one or more features of the SUT. Your
baseline file (which is the expected output) contains the per-call records you
have derived from the input file. You run the input file through the SUT, save
the output, & compare that output to the baseline. The diff program is probably
adequate to compare actual output & the baseline in this case, but sometimes
you need a special comparison program. We’ll talk more about that later in
this article.

Here are the general steps to creating a baseline:

1. Design your Test Case.



2. From the test case, derive the input data.

3. Create your baseline data, either by deriving it from the test case or run
it through the SUT & verify it “by hand”.

4. Save the test case, the input data, & the baseline in your database.

Here are the steps to execute a baseline test. These steps should be done
with an automated testing harness when possible:

1. Retrieve the input data file for your test case.
2. Run that input data through the SUT.

3. Compare the actual output to the baseline.

That’s all there is to it. It’s kind of a “duh” technique, when you think
about it, but there are some tricks to maximizing the range of situations in
which baseline testing is applicable. So let’s do some more examples.

Sometimes, the actual output will contain fields that you know will differ
from the corresponding fields in the baseline. You’ll need to ignore some fields
when comparing the actual output with the baseline. That’s easily done by
filtering those fields from both the baseline & the actual output before comparing
them with diff. If your output files are CSV or a similar form, the filtering
program takes less than ten trivial lines of Perl code.

A common case of such fields is time-stamps, but with time-stamps, you
have another option. Part of the inputs for the test can be the time at which
the baseline was created. To run the test, your test harness can set the system
clock to that value before it runs the input through the SUT. This works unless
the resolution of the time-stamps is fine enough that they are affected by the
inevitable small differences in processing time, & even with time-stamps of low
resolution, it is possible that a record will be a border-line case, sometimes with
one time-stamp, sometimes with another, so resetting the clock is of limited use.
Also, system administrators hate the idea.

Jay: Is this a good example, or would another be better? The example I have
here isn’t really baseline, I think. We need some example that shows files that
don’t have records. Or an example that shows a complex application, if we can
do that in the space for an article.

Here’s a more complex example that uses multiple files. In it, let’s test
an implementation of tar.! Our newly implemented, fictional tar program is
bltar (BaseLine TAR). The idea behind this test is to verify that a pre-existing
implementation, tar, can extract an archive that bltar created. This might be a
special case of baseline testing because the input files are the baseline itself.

We use bltar to create a tarball, then pipe that file into tar to extract it
into another directory. We compare the directories with “diff -r”. It’s best to
let your test framework run the test, but by way of explanation, it would work

LSure, tar is a done deal, but that doesn’t mean it doesn’t make a good example.



as if we ran this shell command: “bltar cf - testdir |(cd /tmp; tar xf
-); diff -r testdir /tmp/testdir”. Any differences should be considered
suspicious; they are almost certainly errors.

So far, the examples have used files, but baseline testing isn’t limited to files.
Here’s another example that isn’t testing a file-processing system. It requires
some custom hardware for a project testing a television tuner that responds to
a remote control.

Jay: Since I don’t know hardware testing very well (though I do it at work
currently, I guess), I think this example sounds artificial. Maybe I can write
it better later, after thinking about it, or maybe we could think of some other
example. Anyway, seems like if I was reading the article to learn about baseline
testing from scratch, € I was skeptical, this example would not convince me.

The television tuner is the SUT. The company developing the tuner creates
a computer-controlled test rig that can generate signals like the remote control
would. Another part of the test rig monitors the signal emitted by the tuner &
emits the channel whenever the tuner changes it; those emissions are stored in a
file. The input file tells the test software what signal the mock-up remote control
should emit. The baseline file, as always, is a record of a previous good run or
is constructed from the test case. For this example, it contains the channel
numbers we expect from the signals emitted by the remote control.

1 Conclusion

Need a conclusion.

References



