) INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.692

TELECOMMUNICATION (03/2002)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI networking and system aspects — Abstract Syntax
Notation One (ASN.1)

Information technology — ASN.1 encoding rules:
Specification of Encoding Control Notation
(ECN)

ITU-T Recommendation X.692

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
IP-based networks
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSINETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.369
X.370-X.399
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, please refer to the list of ITU-T Recommendations.

INTERNATIONAL STANDARD 8825-3
ITU-T RECOMMENDATION X.692

Information technology —
ASN.1 encoding rules:
Specification of Encoding Control Notation (ECN)

Summary

This Recommendation | International Standard defines the Encoding Control Notation (ECN) used to specify encodings
(of ASN.1 types) that differ from those provided by standardized encoding rules such as the Basic Encoding Rules
(BER) and the Packed Encoding Rules (PER).

Source

ITU-T Recommendation X.692 was prepared by ITU-T Study Group 17 (2001-2004) and approved on 8 March 2002.
An identical text is also published as ISO/IEC 8825-3.

ITU-T Rec. X.692 (03/2002) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementors are cautioned that this may not represent the latest information and are therefore strongly
urged to consult the TSB patent database.

© ITU 2003

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

il ITU-T Rec. X.692 (03/2002)

CONTENTS

Page
T8y oY 4 LT8R ix
1 1T) 1 RSSO 1
2 INOIMALIVE TETETEIICES ... eeitietietieieee ettt ettt et e et et e st e s aee s bt e see e st eneeemeeeaeeeseaneeeneeeneeeneesneesean 1
2.1 Identical Recommendations | International Standardscccceoeieririiiniieieee e 1
2.2 AddIHONAL TEEIEIICESveviitieeieiieiieiete ettt ettt ettt et et e e steete e bt eseesee e e besbeebeeneeneebeeneeneeneens 2
3 DIETINITIONS ...ttt ettt h et e bt et e et eb e eb e e bt e bt en bt e et e s et e bt et e et saeesbeenbeeteenteens 2
3.1 ASNLT dEfINIEIONS. ..ueitiieitiitiei ettt ettt ettt b e bt st e e e st et s bt saeebe e st enneneens 2
3.2 ECN-SPECIfiC AEfINItIONSeccviieiiieieiiieii ettt ettt et et sae e b e esaeesaesta e baesbeessesssessnesseensesssenens 2
4 ADDTEVIALIONS ...ttt ettt ettt ettt ettt b e eb e eat et et et se e e bt sb e ebeeatea b et et et et bt bt ebeeat et enten 5
5 Definition Of ECN SYNEAXcceiieriieiieieeteeiestteteeiestestesete st eteeneeeseesseeseesseesseessesssesseeseensesssesseesseenseensenns 5
6 Encoding conventions and NOTAtION.ccuereeiieiieieee ettt ettt ettt et e eete st e steesaeeaeeneesneesseeneeenneens 5
7 The ECN CHATACTET SEL.....c.tiitiiitieiiiie ittt ettt ettt ettt he e bt ettt e at e s bt et e e been b e ebeesbeenbeenbeeneesaeenae 5
8 ECN LEXICAI TEEIMS ...t eteetteiieeete ettt ettt ettt ae et e et e et e ekt e bt e et es e eaeentease et e ebeeseebeeneenseseseanesaeeneeneenseneens 6
8.1 Encoding ODJECt FEfEIENCEScvevuiiiiiiiieiicieeie sttt ettt ettt ste et eeae e steesbe e b e essesraessaesseesseessensaensees 6
8.2 Encoding ODJECt SEt IEIEICICES .. ecuviviiiieiieieeiiesieeie ettt ettt e te et eae s eesteebeesaesseesseeseenseesseessensaensees 6
8.3 ENCOding Class TETEICICESccviiiiriiiiieiecieete sttt ettt e et te et e e beeeaeseaesteebeesseessesseesseenseenseessensaesens 7
8.4 ReSEIVE WOT TLEIIIS ...ttt ettt st s b e bttt et et sttt be bt eb e et e e 7
8.5 Reserved encoding class NAME TLEIMSc.eeverieriieriieieeiesiesieeiestestesreeseeeeseesseesseenseesseessessaensees 7
8.0 INOIFECN TEEII .ottt ettt ettt b ettt et bbbt bt sbe bt et e nee 7
9 ELCIN COMCEPES 1.ttt ettt ettt ettt ettt et s it st e et e s bt e e at e e sabeesab e e sabeesabeesabeesabeesabeesabeesabaesabeesabeesanaesn 8
9.1 Encoding Control Notation (ECN) SpecifiCationsccceerurrreirieriienieeiieieeieeieeie e 8
0.2 ENCOGING CLASSES ...uveeutieiieieeie ettt ettt ettt et et et e e e e e st e sbe e bt e et enteeae e s e et e enteenseeseesseeseenseennesneeenes 8
9.3 ENCOUING SIUCTUIESeeutieieeeiieeiieeiie sttt ettt te bt e bt e e e teeeeesaeeseee et eneeeaeeeseesseanseenseenaesmeesaeenseensesneeenee 9
9.4 ENCOTING ODJECS ..uveitieiieieete ettt ettt ettt et e e s bt e bt e et et e e st e s st et e enteeneeeneeeseesbeenseensesneeenee 9
9.5 ENCOAING ODJECE SELS .. .eeutieuiiitieitieieeite ettt ettt et et et e bt e bt et e e aeeseeesae e teeneeeneeenea st e seenseenseenseeneeenee 9
9.6 Defining New enCOAING CIASSESccueruirtiiuieieieierieeeete ettt ettt e ste sttt ese et et e ntestesbeebeeneeaeeneeneeneeneens 10
9.7 Defining eNCOAING ODJECTS. .. .ceueiietiitieteeie ettt sttt ettt ste st ae st e s et e e s besteeneeeeeseeneenseneens 11
9.8 Differential encoding-deCOING..........coouiiiiiiiiiiiieieeee e e e 11
9.9 Encoders Options 1N @NCOMINESccueeueruiruieieieietesteete et etceie et e teste bt eaeeseeseeneesessestesnesaeeseeneenseneens 12
9.10 Properties 0f @NCOAINEZ ODJECLSerueruiruiriietieieieieeteete ettt sttt ettt et e e s be st aeeaeeseeneeneeneens 12
O.11 ParamELeIIZAtION ... euietietieiieitetete sttt ettt ettt eb e bt ettt e et et e s besbeeb e e st e st et et e besbeebesaesaeebeeneennenens 12
012 GOVEITIOLS «..euetiniiiniieiieeite et ett ettt et et sat e sbt bt et et sat e s bt e s bt e sbe e bt eateeat e ebe e bt et e enbeeabeeenesbeenbeenbeemeesaeenae 13
9.13 General aspects OF €NCOMINZScviiieriiiirieiieieeiese ettt ettt et e taesta e beesbeesbessaessaesseessesnsenens 13
9.14 Identification of INfOrmation EleMENLScceriririiiiiiiieieeece et 14
9.15 Reference fields and determINANLScecuerieriiriririreeiieeete ettt ebe e eens 14
9.16 Replacement classes and StIUCLUIES.........ccuievieverieriierieeieetesee st esteeseeseesseesseesseesseessesseesseessesssesssensns 14
9.17 Mapping abstract values onto fields of encoding StruCtUIes...........ccevieeiiecierienieniee e 15
9.18 Transforms and tranSform COMPOSILESccverrerrieriieiieriere ettt eees et eae e seee e sesaesnnesneesseenseenes 16
9.19 Contents of Encoding Definition MOdUIES..........ccevierieriiiiiiiiecieeee e e 16
9.20 Contents of the Encoding Link ModUleccoccieiieiiriiii et 17
9.21 Defining encodings for primitive encoding Classes.........cceevvireierierieriieieeierieieeie e 17
9.22 Application Of €NCOMINGScccveeiiiieiiiee ettt ettt ettt et e et eneessee s seenaeeneesneeenes 19
9.23 Combined encoding ODJECE SELeeiiruiiriieiieieeie ettt ettt ettt e e et et e eneessee st enseeeeeneeenes 19
9.24 APPIICALION POIML. . ..iiuiieiiietieitieteee ettt ettt ettt ettt et ete e beetessteeae e st e et enseeneeeseesseeaseenseenseeneeenes 19
9.25 ConditioNal €NCOMINESccuveruieitieiieit ettt ettt ettt et e ee et e e st e st e e et e et enteeneesseesseenseeneeeneeenes 20
9.26 Changes to ASN.1 Recommendations | International Standards..............ccceeeerieiiniinieiieiieeeee 20
10 Identifying encoding classes, encoding objects, and encoding 0bject SEtS........coeeerrerieriierierieerieneee e 21
11 ENCOAING ASNLT LYPES ..nienieiiie ettt ettt ettt ettt ettt h e et e at e st et e tesbe et e eaeeseenee s e besseseabesaeeneeneeneeneans 23
T1oT 0 GENETAL ittt h e bt b et e ettt b e e bt bt e a et e b et ebe bt bt et ententen 23

ITU-T Rec. X.692 (03/2002) il

12

13

14
15

16

17

18

19

20
21

v

11.2 Built-in encoding classes used for implicitly generated encoding Structures..........c.ceceeeeeeereereeneeneene

11.3 Simplification and expansion of ASN.1 notation for encoding purposes............ccecererereeieseeneenenuas
11.4 The implicitly generated encoding StrUCTUIEccvervieriiiieiierientt et eeeeeeste e esreeaesrae e eseesseeneeees
The Encoding Link Module (ELM).........cciiciiiiiiiieiieieeiesieee ettt ettt sttt esbe s esaessaesseenseensesnnesens
12,1 Structure 0f the ELM ...c..oiiiiiiiieieee ettt ettt ettt s be et nae s
12.2 ENCOUING EYPS .uvietientieteeieetestesttesteeteeteettesstesseesseensesssesseesseesseenseanseansesssanseenseenseensesnsenseensesnsesnsesnes
APPLICALION OF @NCOAINES.eueeiieiieiieteeieettes et eteete st e st e st eteeeteeseesseesseesseesseessesseesseesseensesnnesseesseenseenseans
I301 0 GENETAL ittt ettt h e bbbt et b e sheebe et et eten
13.2 The combined encoding object set and itS aPPliCAtIONeecuveeirieriieiieieee e
The Encoding Definition Module (EDM)cooiiiiiiiiieiieiee ettt s
The TENAMES CIAUSEeueitieitietieie ettt ettt ettt et e e et e et e e s bt e bt e et en e e eae e st e et enseeneeeneesseenseenseenseeneeenes
15.1 Explicitly generated and eXported SEIUCTUIEScc.eiirieuirieieieriere sttt ee e
15.2 NAME CHANZESeouiiiiiieiieeiet ettt b e b ettt ettt atesa et e e ea e e bt e sbeenbeenbeeneeeneesaes
15.3 Specifying the region for name Changesccceecvieiirieiieniee e e
Encoding class aSSIZNMENLSceecvierieiieiieniieitieteeteeteesteesteesesaeseeesseesseesseesseessesseesseessesssesseesseesseessesssenses
LO.1 GENETAL oottt h e h e bt et e ettt b e e bt eb e et et e bbb sheeb et ententen
16.2 Encoding Structure defiNitiONc.ccveriieriieiieeieeie ettt et see sttt et eetesseesseesseesesnaesseesseenseensesnns
16.3 Alternative enCOdING SIIUCTUIEc..eevieieieieitiesteesiestestestee et eteeeeeseesseeteensesssessaesseenseensesnsesseensesnsesnns
16.4 Repetition eNCOAING SHUCTUIE.erieriietieieetesiesteesieeteseeseesseeseesessaesseenseenseessesssessaeseesesnsessesnns
16.5 Concatenation enCOAING STIUCIUIEc.eevirieriierieeieeieetestesteesteessestesseesseenseenseessesssesseesseensessessennns
Encoding ObJECt ASSIZNIMENLScc.eervieriieiirieiiesteeieesteetesetesteeteesseeseesseesseenseessessaesseesseensesnsesnnesseesseensesnsenns
B B € 1<) 1 T | SRR
17.2 Encoding with @ defined SYNTAXc.cecuiiiiiiiiiieieeee ettt ettt s
17.3 Encoding with encoding ODJECT SELSccuiiiuiriirieiieiieie ettt ettt e e e ens
17.4 Encoding using value MaPPINGS.......cccueruiruiririetieieienteeteetesteeteeeeteseestesteseeeseeneensensessesbesaeeseeneensenens
17.5 Encoding an encoding StIUCHUIEcc.eieiirieieieiese sttt ettt eeee e eteste st ebe st eseeneensensestesbesaeebeeneanseeens
17.6 Differential encoding-deCOING..........coouiiiiriiiiiiiiieeeee e ettt s
17.7 ENCOGING OPLIOMNS...eutititiitietieiieiet ettt ettt et et et e besee e bt e st eseeae e eensesseeteaseeseaseeneanseaseaseasesaeeneeneansaeens
17.8 Non-ECN definition of encoding ODJECTScceiuiiiiiiieieieereeeee ettt
Encoding ObJECt SEt aSSIZNIMENEScuiiueitiitieieeiieti ettt ettt ettt et et e e steste e bt eseeseeneensenseseabesaeeneeneenseneens
I8.1 GEMETAL ittt ettt h e bbbt b e e h e eb e a e e et et b she bt et ententen
18.2 Built-in eNCOdING ODJECTE SELS ...eeuvieeiiriiieiieriieiieteiteseesteeteetesetesteesseesseessesssesseesseesseessesssesseessesssesnsessns
IMAPPING VALUCS ..veevvieiieiiieeie ettt ettt e ettt et e e et e st e st e s s ee st enseesseessessaesseenseenseensesnsesseensesnseansesneenseanseensenns
LO.T GEMETAL oottt b et et ettt b e bbbt et b e sa e bttt enten
19.2 Mapping bBY eXPLICIt VAIUESccveereieiiiiieieeiieseeie ettt ettt sttt et e et e enaeeseesseenseenseenseenseennennns
19.3 Mapping by matching fIelds..........ooriiiieiiiiieeee et
19.4 Mapping by #TRANSFORM encoding ObJECLSccueerueruiriiiieriieriieie et eiieetee et
19.5 Mapping by abstract value OTdering.........ccecueruieruieiieieiie ettt se e e ens
19.6 Mapping by value diStrTDULIONccueeiuiiiiiiiiriieeee ettt et e e e ee e eee
19.7 Mapping integer VAUES t0 DItSc.eeiuiiiiieiieiieeiete ettt ettt ettt ettt ettt e enteseeeeeene
Defining encoding objects using defined SYNTAXccouerieriiriiririeiieieiee et
Types used in defined syntax SPECIICALIONeeueeuiiiiiiieitieiiee ettt sttt ebe e ae e
211 THE URNIE EYPEC cvveieieiiieriieitieie et et e et et et e ebesstessaeseaesteesseesseesseesseasaessaesseessesssesssesseesssesseensesseesseensensenns
21.2 The EnCOdINGSPACESIZE tYPEC ...ccvverrierierietirieiiesieerteesteeteestesseesseesseesseessesssesssessaesseessesssesssesseessesssenns
21.3 The EncodingSpaceDetermination tyPe........ccuevuieruieiiriierierieeiiereseesreesseessessesseesseesseessesssessesssesssenns
21.4 The UnusedBitsDetermination tYPec.cccuerueeruieriiiieniesiierieteeeesteesteesseesesaessaesseesseessesssesssesseessenns
21.5 The OptionalityDetermination tYPe..........ccverreeruereierierierieereetesiesteesteesesaesaesseesseesesnnesseesseenseessenns
21.6 The AlternativeDetermMination tYPC.........verueerreeruerierierieteereeteeseesseesseesessessesseesseesseensesssesseesseessenns
21.7 The RepetitionSpaceDetermMination LYPE.........ccverueeierrierierieeteeieseesreesseessesssesaesseesseessesssesseesseessenns
21.8 The JUSHTICALION LYPEC . .eevieuiieiiieieeiestieiteteetestesete st e st eteeateestessaesseesseenseeasesnsesseesseenseenseeseesseenseenseans
21.9 The Padding tyPe.....eecuieieieiieieeiiesiieieett et eteste st e st e st teeetesse e st esseenseensessaessaesseesseenseansesseesseenseenseans
21.10 The Pattern and Non-NUll-Pattern tYPescocierieiirierieiieieee ettt enee e e e
21.11 The RangeCONAItION LYPC.....iertieiieieeiieitieitiete ettt eece st ettt eetees e stee bt enteeteeseesseesseenseeneeeneeeneenseenneens
21.12 The SizeRangeCONAItION LYPE...c..eeitireeiieitieitierie ettt ettt ee st s et e e e eeseeesaeesaeeneeeneeeneeneeeneens

ITU-T Rec. X.692 (03/2002)

24
25
26

27
27
28

28
28
29

31

32
32
33
34

35
35
38
40
40
40

41
41
42
43
43
44
46
46
47

47
47
48

49
49
50
51
52
52
54
55

56

57
57
57
58
58
59
60
60
61
61
62
63
63

22

21.13 The ReversalSPecifiCation YPE.......cceeruiiiiriirieniieieeieeite sttt sttt sbee bbb e s
21.14 The RESUIESIZE tYPC.....eetiiiiiieiieiiestt ettt sttt ettt ettt et e bt e bt e beebeemeesaeeeae
21.15 The HandIeValte tyPe.......ccieriieriieiiiieiieiieete e etesete st eteesteesseesaesse e beessesssesssessaesseesseessesssesseeseesenns

Commonly used encoding PrOPEILY SIOUPS.....c.verreerreecrerrrereerieerreesestesseesseesseesseessesssesseessesssesssesssesseessesssesses
22.1 Replacement SPECIfICAtION.ccuecieriieiieiieiesieste st et eteeeteetteeteeste e beessesssessaesseesseesseessesssesseenseessenns
Encoding properties, Syntax, and PUIPOSE..........ecvereerierrierreeieriestieteessessesaesseesseessesssesseesseessesssenns
22.1.2 SPECIfiCation TESIICTIONSe.veeveeerereieriesieesteeteeteeetestteteeteeteseaesseesseesseesesnsesseesseenseensenns
22.1.3 ENCOAET GCLIOMS ...c.ueuiuiiniiieriieieeieeiteetet ettt ettt ettt et sbt et ettt besaeebeeaeeanentens
22. 1.4 DECOAET ACTIOMNSeieietieiieteeie et ce sttt et ettt e et e et et e eneeeseeeseesseeaseeseeneesneesneesaeeseeneeans
22.2 Pre-alignment and padding SPeCIfiCatioNceeoiiriirieriieiieieeie et
Encoding properties, Syntax, and PUIPOSE.cecueruieruieriierieeieeientiesteeteeeesneesseesseesseeeesneesaeesseeneeens
22.2.2 SpecifiCation CONSITAINESc.ecevieriieriienieesteesteesteestteestteesteeestreeseeeseeeseessaeesessseesnseens
22.2.3 ENCOAET ACLIOMS ...c.ueeuieuieiiieiteetiett et eiie e et eteeteeaeeat et e e sbe et e ebeeseeseeneensensenseabesaeeseeneeneensans
2224 DECOAET ACTIOMNSeetietieniieiieeie ettt sttt ettt ettt et et ea e sate s bt e sbee bt embeeatesaeesbeenaeenteeneeans
22.3 Start poINter SPECITICATION. ... ccuviivieiiiieiiestieieete et e st esteereeeteetaesteebeesseseaesseessaesseessesssesseesseenseesenns
Encoding properties, Syntax, and PUIPOSE..........ccvereerrierrierrierereesteesreesseesesresseesseessesssesseesseessesssenss
22.3.2 SPECifiCation CONSIIAINESeerververierierieerteeteetesseesseesseesseesesssesseesseesseessesssesseesseessesssenns
22.3.3 ENCOAET ACLIOMS ..cuueuieuieniiierieetiettetteite ettt sb ettt et besatebt et e s et et e sbeseeebe et ennentens
22.3.4 DECOAET ACTIONS ...c.ueeutiuietiteniieteettetteitet ettt sttt ettt et et besbe bt eat et et entesbesbeebeeaeennentens
22.4 Encoding SPace SPECIICALIONeeuereieriieiieieete e ste st ete ettt et et e e esteeeaessaesseesseenseensessnesseenseenseans
Encoding properties, Syntax, and PUIPOSE..........ecvereerierrierreeieriestieteessessesaesseesseessesssesseesseessesssenns
2242 SPECIfiCation TESIICTIONS ..eeuteeieeiiieiieetiesttete et et et ee et et et eteeeeesaeeseeesaeeeeeneesneesaeenseeneeans
2243 ENCOACE ACLIOMNSeetietieiieieeie et ette st et ettt et e st e et et et e eseeseeesseeaseebeeneesmeesneesaeenseeneeens
2244 DECOET ACTIONS ... ueivietietieieeteeiie et te et e st ettt et e et e e et et e eneeeseeeseesseeaseebeeneeemeesseesaeenseeneeens
22.5 Optionality deterMINATIONeiviruiertieiieiieite ettt ettt ettt e sttt et sae e st et e beeabeeseesbeenbeebeeneesneeeeee
Encoding properties, Syntax, and PUIPOSE.cc.eeueruerueeerieierieneestesteeteeseeueeneeee e seeseessesseeseeeesensens
22.5.2 SpecifiCation TESIIICTIONS . ..vieriieetieiiieeieesteesteesteesireesteestaeessaeeseeessaeesaessaeenseeenseeeseeas
22.5.3 ENCOAET ACLIOMS ...cuueuieuieiiietieteeitetteite ettt sttt ettt ettt besbe bt et en et et e s besbeebeeaeenneneens
22.5.4 DeECOACT ACHIOMS ...c..eeuieuieiiterteetiettett ettt sttt sttt ee et e e st et s b sbeebe e st en b et entesbesbeebeeneeneentens
22.6 Alternative determINAtION.cc.eetetertertirterttetiettetet ettt ettt et est et et e sbe bt sbe e st es s et e besbeseeebesaeeneeneenees
Encoding properties, Syntax, and PUIPOSE..........ccvereerierrierreeiereeseesseesseesesresseesseessesssesseesseessesssenss
22.6.2 SPECIfiCAtiON TESIIICTIONS ...eeuvieuieeeteriiesiesiierte et eteeteestteteenteeteseaesseesseeseensesnsesseesseenseansenns
22.6.3 ENCOAET ACLIOMS ...c.ueeuiiuiiiiieniieieeieeiteitet ettt ettt ettt ettt et be s ebeeaeeaneneens
22.6.4 DECOET ACTIONSeieietieiieieeie et te et e st ettt e et et e et et enteeneeeeeesse e seeseeneesneesneesaeenseenseans
22.7 Repetition SPACE SPECITICATIONeeueirtietieitieie ettt ettt et e sttt e e e te s see s st e seeeaeeneeeneesneeneeenneens
Encoding properties, Syntax, and PUIPOSE.ceouerieruieruierieeiesienteesteeteeeeseeesseesseesseeeesneesaeesseaneeens
22.7.2 SPECifiCation CONSIIAINESccuerruereeriiertiertterteeeeeteeteesttenteenteeetesneesseesseenseeeesneesseesaeenseeneeens
22.7.3 ENCOAET ACLIOMS ...c.ueuieuieiiteiteetiettetieite e et e it ete et eat et e besbesseebeeseeseeneensensesseabesseeseeneeneensens
2274 DECOET ACTIONSeetieutieniieiieeiie ettt sttt ettt ettt e st e bt ea e eate s bt e sb e e bt enbeeaeesaeesbeenaeeteenteens
22.8 Value padding and JUSHHTICAION.c.eiuiiiiieieieeseee ettt ebe e
Encoding properties, Syntax, and PUIPOSE..........ccvereereerrierriereneesiesseessessesresseesseessesssesseesseessesssenss
22.8.2 SPECIfiCation TESIIICTIONSeuvieiieeieiieieiesitesteeteeeteeteesteesteeseebesesesseesseesseessesssesseesseesseesenns
22.8.3 ENCOAET ACLIOMS ..cuueuiiuieniiierieetietceit ettt sttt ettt b e sbe bttt e e et e b sbeebeeaeennentens
22.8.4 DECOAET ACTIONS ...c.ueeuteuiiiitertietieteeit ettt sttt ettt et ettt b e st e sbt et et et e st e sbesbeebeeaeennensens
22.9 Identification handle SPECITICALIONueiieriieriieiieieeiee et e e eseenneens
Encoding properties, Syntax, and PUIPOSE.......c.cccvereerierrierreeieriestieseessesseseesseesseessesssesseesseessesssenns
22.9.2 SPecifiCation CONSIIAINTSc.eerueeiereiertieriierteeeeeteeteeste et eteeeeeeeesseesseeseeeeeneesseesaeenseeneeens
22.9.3 ENCOARIS ACHIONS. ¢...eutetietietieteeteeteette st e et et et eseeste e te e teeneeemeesseesseesseeseeneeeneesneenseaseans
22.9.4 DECOAETS ACLIOMNSeueeuieiieiiesieeie et ete et e st et et eseeeteeste e beeseentesaeesseesseenseenseeneeeneesseenseans
22.10 Concatenation SPECTTICALIONccvieeuieiiieiieeriieste ettt esteestteesreeteeeteeeseesssaeesseesnsaeasseessseessseessseenssennes
Encoding properties, Syntax, and PUIPOSE.cc.eeuerueruieerieienieneentesteeteeseeueeneeee e seessesseseeeseeneeseneens
22.10.2 SpecifiCation CONSITAINESecccvieeeieeriierieerieesieesteesteesteestteestreenseeeseeesseeasaeesesssseesnseens
22.10.3 ENCOAET ACLIOMS ...c.veeuieuieiiieriietiettetteite ettt ettt e ettt besbe bt et et entenbesbesbeebeeaeenneneens
22.10.4 DeECOAET ACHIOMS ...c..eeuteuieniiterteeteettetteite ettt ettt et et e e ettt e b sbeebe e st e s et entesbesbeebeeaeeneeneens
22.11 Contained type encoding SPECIfICAtION.cvuiiriierieeiiiteieete e ete st eteeaeeaeseesteeseesaessaesseesseensessseens
Encoding properties, Syntax, and PUIPOSE..........ccvereerreerrierrieiereesteesreesseesessesseesseessessseseesssessesssenss
22.11.2 ENCOAET ACLIOMS ...cueeuiuiiiiieriieteeieeiteitet ettt ettt ettt et et ebe et ettt besae b eaeeanensens
22.11.3 DECOAET ACHIONS ...c..eeutiuiiiiiertieteeieeit ettt ettt ettt ettt et s bbbttt e st e stesbesaeebeeaeennentens
22.12 Bit 1eVersal SPECITICALIONccuieieeietietieieetesieseet et te et et et et e esbeesaestaesseesseensesnsessnesseesseenseenseens
Encoding properties, Syntax, and PUIPOSE.cecueruieruieruierieeieetiesteenteeeeeeeseeesseesseeseeeeesseesaeesseenseens
22.12.2 SPecifiCation CONSIIAINESeeruerieriertieriterieeeeeteeteesteeneee e eeeeeeesseesseeseeeeeneesneesaeenseeneeens

ITU-T Rec. X.692 (03/2002)

63
64
64

65
65
65
66
67
67
68
68
68
68
68
69
69
69
69
69
70
70
70
71
71
72
72
72
73
73
74
74
74
75
75
75
75
76
77
78
78
78
79
80
80
80
80
81
81
81
82
82
82
82
83
83
83
83
83
83
83
84

A%

23

vi

22.12.3 ENCOUET ACHIOMS ...ttt e et e e et e e ettt e e eaa e e e eaaeeeseaaeeesentaeeseaneeesnnneeeeas

22.12.4 DECOAET ACTIONSeevieniieniieiteeieeite st sttt ettt ettt e bt e bt ea e sate s bt e sbee bt ebeeaeesseesbeenaeenseeneeens
Defined syntax specification for bitfield and constructor Classes.........ocevverrieiieienierieieee e
23.1 Defining encoding objects for classes in the alternatives Categoryccevvevverveereerierieeieeeeneennens

23.1.1 The defiNed SYNTAXccouieiieiieieeiestesteste et e et e et et ete et e seaesseesseeseensesnnesseesseeseenseensenns

23.1.2 Purpose and reStIICTIONSeevueeruerrierierierieetieteeteettesteeseesessesenesseesseesseensessnesneenseenseens

23.1.3 ENCOAET ACLIOMS ...cuueuiiiiniiieriieteeiceiteitet ettt ettt ettt st ebt et et sa et besaesbeeaeeaneneens

23. 1.4 DECOAET ACTIONSeitieutieiieteeieeiie ettt et et ettt e et e et et eneeeseeeseesbee st eseeneesmeesneesaeeseeneeans
23.2 Defining encoding objects for classes in the bitstring CategOorycecceevuerruerierieniereee e

23.2.1 The defiNed SYNTAXeeruieiieieeieeiieetie sttt ettt ettt et e et e st et e teeaesneesneesaeesaeenseeneeens

23.2.2 Model for the encoding of classes in the bitstring categoryccecevvereerieienieneeens

23.2.3 Purpose and IESIIICTIONScceevuieriieieieieiiecteereeteeteeetee e esteeseeseeeeeseeesseesseesseessesssesseesenns

23.2.4 ENCOAET ACLIOMS ...c.ueeuieuiiiiteiteetietietieite e e st e testeeueeet et e tesbe et e ebeeseeseeneensessenseabesaeeseeneeneensans

23.2.5 DECOAET ACHIOMS ...c.ueeueeuieniiterteeteett ettt sttt et ettt e e bbbt sbeebt et e s e tentesbesbeebeeneeneeneens
23.3 Defining encoding objects for classes in the boolean Category........ccocveevereierieriereerieeie e eeeseeiens

23.3.1 The defiNed SYNTAXccvieriieiieieeieiieseesie ettt e et ete et e eebeesaestaesteeseessessaesssesseesseensesssenes

23.3.2 Purpose and reStIICTIONScc.eeruieriieieiieiiestiestieteetesteesteeteesessesssessaesseesseessesssesssessesssenns

23.3.3 ENCOAET GCLIOMS ...cuueuiiiiiiieriieteeieetteitet ettt ettt ettt sbt ettt e st b saeebeeaeenneneens

23.3.4 DECOAET ACHIOMS ...c.ueutuiititertietietteiteitet et ettt ettt et et besbe bt st e et estesbesbeebeeaeenneneens
23.4 Defining encoding objects for classes in the characterstring Categoryccecvevverenerereneeeerueneennen

23.4.1 The defiNed SYNTAXeeouieiiieieeieeie ettt ettt ettt e et e st et eteeteeeesaeesseesaeeseeneeens

23.4.2 Model for the encoding of classes in the characterstring category..........ceceeeereerueeeennenns

23.4.3 Purpose and reStrICTIONScc.eeiuieriirieiieetiesteeit ettt et e et eseteseeesaeeseeeeeeneeeneesseeeeens

23,44 ENCOAET ACLIOMS ...cuueeuieuiiiiieiteetieteetieite e e ae e it eteeaeeat et e tesbe et e ebeeseeseeneensensesseabesaeeseeneeneensans

23.4.5 DECOAET ACTIONSeeutieuiieniieiieeie ettt sttt et ettt e st et et ea e sate s bt e sbee bt embeeseesseesbeenaeenteeneeens
23.5 Defining encoding objects for classes in the concatenation Categoryccceeeeereeierierierieresesenaas

23.5.1 The defiNed SYNTAXccvieriieiieieeieiieseeste e eee et e steeste et e eebeseaesreesseesseessesssesseesseesseensenssenes

23.5.2 Purpose and rEStIICTIONSc.eevuieriirieiiesiestiessieteetestesteesseeseesesesessaesseesseessesssesssessesssenns

23.5.3 ENCOAET ACLIOMS ...cuueeuteuieniiieriietietteiteite ettt ettt ettt b e sbe bt et e s et et e sbesbeebeeaeenneneens

23.5.4 DECOAET ACTIONS ...c.ueeuieuiiiitertieteett ettt ettt sttt ettt et besbe bt st e et estesbesbeebeeaeennentens
23.6 Defining encoding objects for classes in the INteger CaAtCZOTYcevvverieriereerieeieeeeeiesieeieeeeeereneeens

23.6.1 The defiNed SYNTAXecouieiieieeieeiesiesteste ettt et et et e et e s eaesseesseesseensesnnesseesseenseenseensenns

23.6.2 Purpose and reStrICTIONScc.eeiuieiiieieiieetieste ettt eete ettt e et eeeseee e e seeeee et e st e sseeeeens

23.6.3 ENCOAET ACLIONSeitietieiieieeie ettt ettt ettt e st et e et e e esee s et e s bt esseebeeneesmeesneesaeeseeneeans

23.6.4 DECOAET ACTIONSeitietieiieieeie et te st ettt ettt e et e et et e e e eseeseee s bt esseeaeeneesmeesseesaeeseeneeans
23.7 Defining encoding objects for the #CONDITIONAL-INT Classccceeeeeeierienenierieeiceeeieieeie e

23.7.1 The defiNed SYNTAXcoouieiiiiiieieitieet ettt ettt sttt et st sbeesbeesaeente et eae

23.7.2 Purpose and IESIIICLIONSceevuiervieiiiieitieeteesteeteeeteeteesteeteeseebeeseesreesseesseesseessesssesseesenns

23.7.3 ENCOAET ACLIOMS ...c.ueeuieuiiiiteitietietteiieite ettt teeteeaeeat et et e st e et e ebeeaeeneeneensensesseabesaeeseeneeneensans

23.7.4 DECOAET ACHIOMS ...c.ueeuieuieiiierteetiett ettt sttt sttt et e e e bbbt sbeebe e st en et enbesbesbeebeeaeeneeneens
23.8 Defining encoding objects for classes in the null CateZOrYcovvvevivieriereeriieie e

23.8.1 The defiNed SYNTAXccvieriieiieieeieiieseeste et e et et ete e b e eebeeeaestaesseeseessesssesseesseesseenseessenns

23.8.2 Purpose and reSIICTIONSeevuierverrierierieriietieteeetesttesteeteesesaeseresseesseenseensessnesneesseensenns

23.8.3 ENCOAET GCLIOMS ...cuueuieiiiiiieniieteeiceit ettt ettt ettt ettt e see b saeebeeaeeaneneens

23.8.4 DECOAET ACTIONS ...c.ueeuieuiiiitertietiete ettt ettt ettt ettt et be st ebt et et e ntesbesaeebeeaeennentens
23.9 Defining encoding objects for classes in the octetstring Category.......coevueeveriereereereeieeiereeeseeeieane

23.9.1 The defiNed SYNTAXeeruieiiieiieieeiieeeie ettt ettt ettt ettt e e ee st et ebeetesneesneesseesaeenseeneeens

23.9.2 Model for the encoding of classes in the octetstring category.........occevvereerereerieneeennns

23.9.3 Purpose and IESIIICLIONSccueevuieriieiiiiiiiecteeteeteeeeeeteesteeteeseeaeeeaesreesseesseesseessesasesseesseens

23.9.4 ENCOAET ACLIOMSueuieuiiiiieiteetiettetieite e e ettt eteeaeeat et e e ebe et e e beeseeseeneensessesseabesaeeseeneeneensans

23.9.5 DECOAET ACTIOMNSeiutieniieniieiieeie ettt sttt ettt ettt e st e bt ea e eate s bt e sbeenbeesaeestesaeesbeenaeenteenteens
23.10 Defining encoding objects for classes in the optionality Categoryccvvevvereiiiviereerienieeieeieseeiens

23.10.1 The defiNed SYNTAXccierrieiieiieieiieseesie e eee st e st esteebeeeseesaessaesseeseessesssesseesseesseensenssenns

23.10.2 Purpose and reStIICTIONSeeruieriieieiiesiestiessieteeetesaesteesseesessesssessaesseesseessesssesssessesssenns

23.10.3 ENCOAET ACLIOMS ...c.eeeuiuiiiiieriietieieeiteitet ettt ettt se st sbt ettt e st b saeebeeaeenneneens

23.10.4 DeECOAET ACTIONS ...c..eeuieuiiiitertieteetteiteitet ettt sttt et ettt et e besbe bt st e et entesbesaesbeeaeennensens
23.11 Defining encoding objects for classes in the pad category.......ccoeceveeriereriieiiieriereere e

23.11.1 The defiNed SYNTAXcecvieriieiieieeiesiestestt ettt et e st et et et e saesseesseeseensesnsesseesseenseenseensenns

23.11.2 Purpose and reStrICTIONSeeiuieiierieiieetierteett et etee et te st e e teeteeeeeseeesaeeseeeeeeneesneesseeeeens

23.11.3 ENCOACE ACLIONSeivietieiieieete et te st ettt et et e et e et et emeeeneesseesseeaseenseeneesmeesneesaeeseeneeens

23.11.4 DeECOAET ACTIOMNSeitietieiieieeteeite st te et et et et et et e et et en e eneeeseesbeeaseeseeneeeneesseesaeenseeneeans

ITU-T Rec. X.692 (03/2002)

84
84

84
84
84
&5
86
86
86
86
87
87
88
88
88
88
90
90
90
91
91
91
92
92
93
93
93
95
95
95
95
95
96
96
96
96
96
97
98
99
99
99
100
101
101
101
101
102
102
103
103
103
103
104
104
104
105
105
106
106
106

23.12 Defining encoding objects for classes in the repetition Categorycoocevereeieierierienene e

23.12.1 The defiNed SYNTAXeertieiiiiieieiieittert ettt ettt sttt e e ettt st sbeesae e e sneeeae

23.12.2 Purpose and rEStIICTIONScceevvieriirieiiesiestiessieteeeteseesteesteeseesessressaesseesseessesssesssessesssenns

23.12.3 ENCOAET ACLIOMS ..cuueuiiuieniiierieetieteeiteite ettt ettt e ettt besbe bt et e s et et e sbesbeebeeaeeneeneens

23.12.4 DECOAET ACTIOMS ...c.ueeuteuteniiteteetiett ettt ettt ettt eet et e et et e bt sbeebeeaeen et e besbesbeebesneeneeneens

23.13 Defining encoding objects for the #CONDITIONAL-REPETITION class.......ccccoccvvererenercenennennen
23.13.1 The defiNed SYNEAXcceeruirieririiriiriieiieieteresest ettt ettt ettt et se et e bt eseeneens

23.13.2 Purpose and reStIICTIONSeevueeruerierierientietieteeeteseeesteeseesesaeseresseesseenseensessnesseenseensenns

23.13.3 ENCOACE ACLIOMNSeetietieniieieete et te et ettt ettt e et et e e et e eseeseeesaeesseeseeneesmeesneesaeeseeneeens

23.13.4 DECOAET ACTIONSeivietietieieeieeiie st te et e st ettt et et e et e et et e eneeeseesseesseeseeneesneesneesaeenseeneeens

23.14 Defining encoding objects for classes in the tag CateZOry........ccveverierieiieieee et
23.14.1 The defiNed SYNTAXeeruieiiiieeieiiertee sttt ettt st e bt ettt st e sbeesaeenteeaeeeae

23.14.2 Purpose and IESIIICLIONSceevuieriieieiiieiteiteeteeteeeteeteesteesteeseeseesresreesseesseesseessesssesseesseens

23.14.3 ENCOAET ACLIOMS ...c.ueuieuiiiiteiteettettetieiie ettt ste et et et e e sbe et e e beeseeseeneensentanseabeseeebeeneeneeneans

23.14.4 DeECOACT ACHIOMS ...c.ueeuiiuieiiterteetiettett ettt sttt sttt eet et et ettt s bt sbeebe e st en et entesbesbeebesaeenaentens

23.15 Defining encoding objects for classes in the other Categories.oovvieriereerieeieriereeie e eeenieens
24 Defined syntax specification for the #TRANSFORM encoding Classcccecvecvieierienienieeiesieseesie e
24.1 Summary of encoding properties and defined SYNAXcceecueeierierieieeie et
24.2 Source and target of tranSfOrMSocvieiiiiiiiiieriere e n e e e
24.3 The Int-t0-iNt tranSTOIM........oiieiieei ettt ettt e s e st eseeseesaesnnesseesseenseenneans
24.4 The DoOl-t0-DOOL traNSTOTMcceeeiieiieiieieeie ettt ettt se e sneesseenseeseenneens
24.5 The DoOI-t0-INt tranSTOTMcuieiieeieitietiee ettt ettt sttt e e s e saeeneeeneeens
24.6 The int-t0-boOl tranSTOTMoiiiiieiiei ettt et et s saeenee e ens
24.7 The int-to-Chars tranSTOIM.........ccuoiiiiieiiee ettt ettt et saeesaeeneee e ens
24.8 The int-t0-bits trANSTOIIILieuiieiiiitieiee ettt et ettt et e e e eeeneesaeeseeeneeeneeens
24.9 The DitS-to-INt trANSTOIIILiiuiieiieeieit ettt ettt e et esbeesaeeaeemeeeneeseeeneeenneens
24.10 The char-to-bits tranSTOIMI.cuieiiiieiieeee ettt ettt ettt beeteeee e sseeseeeneeenneens
24.11 The bits-to-Char tranSfOrM.........cuiiiiiiie ittt ettt e ebe e eneeneens
24.12 The bit-t0-bits tranSTOTIIcc.eiuiiiieieiiie ettt ettt ettt et e e et e beseesbeeneeneeneens
24.13 The bits-t0-bits tranSTOTN.cc.iiuieeieiiieie ettt ettt ettt s et b et be et ebeeneeneeneens
24.14 The chars-to-composite-char transSformc.occiiviiiiiiiiii e
24.15 The bits-t0-COMPOSIte-bits traNSTOIMccveiviieiieiiiitieieeie ettt ebeesae e e
24.16 The octets-to-composite-bits tranSfOIM........cc.eecviieiiiiiiieiieiieie ettt a e e ense e
24.17 The composite-char-to-chars tranSfOrmcceviiriiiieiieieceeeee et ne e
24.18 The composite-bits-t0-Dits tranSTOrMc.cciiriiiiiiiiieiecieeeie et raene e
24.19 The composite-bits-t0-0Ctets transSfOrML............ccieriieiieciieierieieeie et eaense e
25 Complete encodings and the #HOUTER Class.......cc.ccieciiiieiiinieieeie ettt ete e esae e sseesbeessesneeees
Encoding properties, syntax, and purpose for the #OUTER Class..........ccceecuerieiieieicieiiereeeee e
25.2 Encoder actions fOr HOUTERcccoiiiiiiiiiieiieceeee ettt esneeseenne e
25.3 Decoder actions for HOUTERc.cccuoriiiiiiinirieie ettt s een
Annex A Addendum to ITU-T Rec. X.680 | ISO/TEC 8824-1........oooieiiiieiieiiee ettt e
A.l EXpOrts and iMPOTtS CLAUSESecueeieeiieieieitieteeie ettt ettt ettt et et e e eetesseeseeesbeeeeeneesneesseeneeenneens
A2 Addition of "REFERENCE"c.oooiiiiiiioieiieeese ettt ettt be e eseeseeneenseneeneas
A3 Notation for character String VAIUEScoceeieriiiiiiitieieeii ettt ettt see bt eseeeeneas
Annex B Addendum to ITU-T Rec. X.681 | ISO/TEC 8824-2ooiiiiieiieieeieseesie ettt
Bil D INIEIONS. c..teiiiiiieitieeett et ettt ettt h e bbbttt et bt bt e bt saeesheenbeete et eae
B.2 Additional IEXICal TEEIMS ..c..eeueeuiiuieieitiiteite ettt sttt sttt ettt sttt s eeebe et eens
B.3 Addition of "ENCODING-CLASS" ...ttt ettt sttt st
B4 FieldSPeC additiONScccveviiiiieiieiieieeiiesteeie ettt st et e e eaeeeaeseeeste e beesseessesssessaesseessesssesseensesssesssenens
B.5 Fixed-type ordered value list fIeld SPECccvivieriiiriieiieie ettt
B.6 Fixed-class encoding object fIeld SPEC......c.cviiriieiiiiiiiieitieie ettt s ees
B.7 Variable-class encoding object field SPECccieviieiirierieieieeeee e
B.8 Fixed-class encoding object set field SPEC.......cccueiiirierieiieiieieeee et e
B.9 Fixed-class ordered encoding object list field SPEC......ceecverierierieiieieeiecieeeee e
B.10 Encoding class field SPECc.eecveeierieiieiieie e sttt ettt ettt eeteseae s e e seeseensesnnesnee st eseenneens
B.11 Ordered value liSt NOTATIONeecvieieeieiiecieie ettt ettt ae sttt e et eeaesaesseesseensesnaesseesseenseenneans

ITU-T Rec. X.692 (03/2002)

106
106
107
107
107

107
107
109
109
109

110
110
111
111
112

112

112
112
114
115
116
116
117
117
118
119
119
121
122
123
123
123
124
124
124
125

125
125
126
126

127
127
127
128

129
129
129
129
129
130
130
130
130
131
131
131

B.12 Ordered encoding 0bject liSt MOTATIONcc.eeuieieieiertieteet ettt ettt ebe e eaeeeeneas
B.13 Primitive fIeld NAMEScueiiiiiiiiieiiee ettt sttt et st
B.14 Additional re€SETVEd WOTAScoueeuiiieieieriieie ittt ettt sttt et et ebe s enaeneens
B.15 Definition of enCOdIiNg ODJECLSccvieiiriiriieiiieiieie sttt ettt te b eeaesteesbeebeessessaessaesseessessnenens
B.16 AddItions t0 "SELHINE" ...veeoviiiiiieiiesie ettt ettt ettt et este e teeste et e etteeta e seenseesseesaeesaesbeenbeenseeraennes
B.17 Encoding class fIeld tYPe......ccieruiiiiiieriiciietieieeteste et ere et ste et b et e eae st e be e b e esbessaessaenbeenseenaenees

Annex C Addendum to ITU-T Rec. X.683 | ISO/IEC 88244ccooieiieieiieieeieeieseeeeesie e eeeeeeesvaeseesseseaessaeees
Annex C Addendum to ITU-T Rec. X.683 | ISO/IEC 88244oouoieiriiieiiiieieieieeeiesieeiesee ettt

C.1 Parameterized aSSIZNIMEILSccceeiuieriieieieiietieeteeste et eteesee st e ste e et et e eateesee et enteenseeseesseesseeseenseeneennes
C.2 Parameterized encoding aSSIZNMENESc.cecuirieruiertieiiieteeee e eeee st et eteeneeseee bt eteeneesneesneesseeseeeneeens
C.3 Referencing parameterized defiNitions.c.eeouirierieiieie et
C4 Actual parameter LIStooiiiiiieiiee ettt ettt e e ees

PN Q11T QB I 25 ;1111 o) L1 OSSPSR

DLl General EXAMPIESccccuiiiiiieiiieiiiecie ettt ettt rte et e et eeteeestaeeteeeseeesbeeesaeenseeasaeenseeasaeenbeesnsaeensaens
D.2 Specialization EXAMPIEScc.eeiiirieiiieiieiectece et ete ettt e et steeste et e e tseetseste e beesseesseesaesseesaeesseeseesneans
D.3 Explicitly generated Structure €Xamples..........coeeierieriirerieieieieieeeie ettt ebe st
D.4 A more-bit encoding eXaAMPIE.......c.cccueriiirrieiieieeiesiereeteetesee st e steebeebeetaeete e saesseesbessaesreesseesesneenees
D.5 Legacy protocol specified with tabular NOtAtIONc.eecveeiiicieiieriieie et

Annex E Support for HUffman encodingsccccoevieiiieieiiniieieie ettt
Annex F Additional information on the Encoding Control Notation (ECN)........cccceeviriiinienieiieieeieeeeeee e

Annex G Summary of the ECN NOtAtIONocuirtiriiiiiiiiiieieeese ettt ettt ee s

viii

ITU-T Rec. X.692 (03/2002)

131
132
132
132
132
133

134

134
134
134
135
135

137
137
144
151
156
158

163
165
166

Introduction

The Encoding Control Notation (ECN) is a notation for specifying encodings of ASN.1 types that differ from those
provided by standardized encoding rules. ECN can be used to encode all types of an ASN.1 specification, but can also
be used with standardized encoding rules such as BER or PER (ITU-T Rec. X.690 | ISO/IEC 8825-1 and ITU-T Rec.
X.691 | ISO/IEC 8825-2) to specify only the encoding of types that have special requirements.

An ASN.1 type specifies a set of abstract values. Encoding rules specify the representation of these abstract values as a
series of bits. ECN is designed to meet the following encoding needs:

a) The need to write ASN.1 types (and get the support of ASN.1 tools in implementations) for established
("legacy") protocols where the encoding is already determined and differs from all standardized encoding
rules.

b) The need to produce encodings that are minor variations on standardized rules.

The linkage provided in an ECN specification to an ASN.1 specification is well-defined and machine processable, so
encoders and decoders can be automatically generated from the combined specifications. This is a significant factor in
reducing both the amount of work and the possibility of errors in making interoperable systems. Another significant
advantage is the ability to provide automatic tool support for testing.

These advantages are available with ASN.1 alone when standardized encoding rules suffice, but the ECN work provides
these advantages in circumstances where the standardized encoding rules are not sufficient.
NOTE 1 — Currently ECN supports only binary-based encodings, but could be extended in the future to cover character-based
encodings.

Annex A forms an integral part of this Recommendation | International Standard, and details modifications to be made
to ITU-T Rec. X.680 | ISO/IEC 8824-1 to support the notation used in this Recommendation | International Standard.

Annex B forms an integral part of this Recommendation | International Standard, and details modifications to be made
to ITU-T Rec. X.681 | ISO/IEC 8824-2 to support the notation used in this Recommendation | International Standard.

Annex C forms an integral part of this Recommendation | International Standard, and details modifications to be made

to ITU-T Rec. X.683 | ISO/IEC 8824-4 to support the notation used in this Recommendation | International Standard.
NOTE 2 — It is not intended that Annexes A, B and C be progressed as amendments to the referenced Recommendations |
International Standards. The modifications are solely for the purpose of ECN definition (see clause 5 and 9.26).

Annex D does not form an integral part of this Recommendation | International Standard, and contains examples of the
use of ECN.

Annex E does not form an integral part of this Recommendation | International Standard and provides more detail on
the support for Huffman encodings in ECN.

Annex F does not form an integral part of this Recommendation | International Standard, and identifies a Web site
providing access to further information and links relevant to ECN.

Annex G does not form an integral part of this Recommendation | International Standard, and provides a summary of
ECN using the notation of clause 5.

ITU-T Rec. X.692 (03/2002) ix

ISO/IEC 8825-3:2003 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

1 Scope

Information technology —
ASN.1 encoding rules:
Specification of Encoding Control Notation (ECN)

This Recommendation | International Standard defines a notation for specifying encodings of ASN.1 types or of parts of

types.

It provides several mechanisms for such specification, including:

direct specification of the encoding using standardized notation;
specification of the encoding by reference to standardized encoding rules;
specification of the encoding of an ASN.1 type by reference to an encoding structure;

specification of the encoding using non-ECN notation.

It also provides the means to link the specification of encodings to the type definitions to which they are to be applied.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and International Standards are subject to revision, and parties to agreements based on
this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

ITU-T Recommendation X.660 (1992) | ISO/IEC 9834-1:1993, Information technology — Open Systems
Interconnection — Procedures for the operation of OSI Registration Authorities: General procedures.
(plus amendments).

ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information technology — Abstract Syntax
Notation One (ASN.1): Specification of basic notation

ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology — Abstract Syntax
Notation One (ASN.1): Information object specification.

ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology — Abstract Syntax
Notation One (ASN.1): Constraint specification.

ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology — Abstract Syntax
Notation One (ASN.1): Parameterization of ASN.1 specifications.

ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology — ASN.1 encoding
Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER).

ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002, Information technology — ASN.1 encoding
rules: Specification of Packed Encoding Rules (PER).

NOTE 1 - Notwithstanding the ISO publication date, the above specifications are normally referred to as
"ASN.1:2002".

ITU-T Rec. X.692 (03/2002) 1

ISO/IEC 8825-3:2003 (E)

NOTE 2 — The above references shall be interpreted as references to the identified Recommendations | International
Standards together with all their published amendments and technical corrigenda.

2.2 Additional references
— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane.

NOTE — The above reference shall be interpreted as a reference to ISO/IEC 10646-1 together with all its published
amendments and technical corrigenda.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 ASN.1 definitions

This Recommendation | International Standard uses the terms defined in clause 3 of ITU-T Rec. X.680 | ISO/IEC
8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3, ITU-T Rec. X.683 | ISO/IEC
8824-4, ITU-T Rec. X.690 | ISO/IEC 8825-1 and ITU-T Rec. X.691 | ISO/IEC 8825-2.

3.2 ECN-specific definitions

3.2.1 alignment point: The point in an encoding (usually its start) which serves as a reference point when an
encoding specification requires alignment to some boundary.

3.2.2 auxiliary field: A field of a replacement structure (that is added in the ECN specification) whose value is set
directly by the encoder without the use of any abstract value provided by the application.

NOTE — An example of an auxiliary field is a length determinant for an integer encoding or for a repetition.

3.2.3 bit-field: Contiguous bits or octets in an encoding which are decoded as a whole, and which either represent an
abstract value, or provide information (such as a length determinant for some other field — see 3.2.30) needed for
successful decoding, or both.

NOTE - It is in legacy protocols that "or both" sometimes occurs.

3.2.4 bit-field class: An encoding class whose objects specify the encoding of abstract values (of some ASN.1 type)
into bits.

NOTE - Other encoding classes are concerned with more general encoding procedures, such as those required to determine the
end of repetitions of bit-field class encodings, or to determine which of a set of alternative bit-field encodings is present.

3.2.5 bounds condition: A condition on the existence of bounds of an integer field (and whether they allow negative
values or not) which, if satisfied, means that specified encoding rules are to be applied.

3.2.6 choice determinant: A bit-field which determines which of several possible encodings (each representing
different abstract values) is present in some other bit-field.

3.2.7 combined encoding object set: A temporary set of encoding objects produced by the combination of two sets
of encoding objects for the purpose of applying encodings.

3.2.8 conditional encoding: An encoding which is to be applied only if some specified bounds condition or size
range condition is satisfied.

3.2.9 containing type: An ASN.I type (or encoding structure field) where a contents constraint has been applied to
the values of that type (or to the values associated with that encoding structure field).

NOTE — The ASN.I types to which a contents constraint (using CONTAI Nl NGENCCODED BY) can be applied are the bitstring
and the octetstring types.

3.2.10 current application point: The point in an encoding structure at which a combined encoding object set is
being applied.

3.2.11 differential encoding-decoding: The specification of rules for a decoder that require the acceptance of

encodings that cannot be produced by an encoder conforming to the current specification.

NOTE - Differential encoding-decoding supports the specification of decoding by a decoder (conforming to an initial version of a
standard) which is intended to enable it to successfully decode encodings produced by a later version of that standard. This is
sometimes referred to as support for extensibility.

2 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

3.2.12 encoding class: The set of all possible encodings for a specific part of the procedures needed to perform the
encoding or decoding of an ASN.1 type.

NOTE - Encoding classes are defined for the encoding of primitive ASN.1 types, but are also defined for the procedures
associated with ASN.1 tag notation, the use of OPTI ONAL and for encoding constructors.

3.2.13 encoding class category: Encoding classes with some common characteristics.
NOTE — Examples are the integer category, the boolean category, and the concatenation category.

3.2.14 encoding constructor: An encoding class whose encoding objects define procedures for combining, selecting,
or repeating parts of an encoding. (Examples are the #ALTERNATI VES, #CHO CE, #CONCATENATI QN, #SEQUENCE, etc.
classes.)

3.2.15 Encoding Definition Modules (EDM): Modules that define encodings for application in the Encoding Link
Module.

3.2.16 Encoding Link Module (ELM): The (unique, for any given application) module that assigns encodings to
ASN.1 types.

3.2.17 encoding object: The specification of some part of the procedures needed to perform the encoding or decoding
of an ASN.1 type.

NOTE - Encoding objects can specify the encoding of primitive ASN.1 types, but can also specify the procedures associated with
ASN.1 tag notation, the use of OPTI ONAL and with encoding constructors.

3.2.18 encoding object set: A set of encoding objects.

NOTE — An encoding object set is normally used in the Encoding Link Module to determine the encoding of all the top-level
types used in an application.

3.2.19 encoding property: A piece of information used to define an encoding using the notation specified in clauses
23, 24 and 25.

3.2.20 encoding space: The number of bits (or octets, words or other units) used to encode an abstract value into a
bit-field (see 9.21.5).

3.2.21 encoding structure: The structure of an encoding, defined either from the structure of an ASN.I1 type
definition, or in an EDM using bit-field classes and encoding constructors.
NOTE 1 — Use of an encoding structure is only one of several mechanisms (but an important one) that the Encoding Control
Notation provides for the definition of encodings for ASN.1 types.
NOTE 2 - Definition of an encoding structure is also the definition of a corresponding encoding class.

3.2.22 explicitly generated encoding structure: An encoding structure derived from an implicitly generated encoding
structure by use of the renames clause in an EDM.

3.2.23 extensibility: Provisions in an early version of a standard that are designed to maximize the interworking of
implementations of that early version with the expected implementations of a later version of that standard.

3.2.24 fully-qualified name: A reference to an encoding class, object, or object set that includes either the name of the
EDM module in which that encoding class, object, or object set was defined, or (in the case of an implicitly generated
encoding class) the name of the ASN.1 module in which it was generated. (See also 3.2.42.)

NOTE — A fully-qualified name (see production "ExternalEncodingClassReference" in 10.6) has to be used in the body of a

module if the encoding class is an implicitly generated encoding structure whose name is the same as a reserved class name, or if
use of the name alone would produce ambiguity due to multiple imports of classes with that name. (See A.1/12.15).

3.2.25 generated encoding structure: An implicitly or explicitly generated encoding structure whose purpose is to
define the encodings of the corresponding ASN.1 type through application of encodings in the ELM.

3.2.26 governor: A part of an ECN specification which determines the syntactic form (and semantics) of some other
part of the ECN specification.

NOTE — A governor is an encoding class reference, and it determines the syntax to be used for the definition of an encoding
object (of that class). The concept is the same as the concept of a type reference in ASN.1 acting as the governor for ASN.1 value
notation.

3.2.27 identification handle: Part of an encoding which serves to distinguish encodings of one encoding class from
those of other encoding classes.
NOTE — The ASN.1 Basic Encoding Rules use tags to provide identification handles in BER encodings.

3.2.28 implicitly generated encoding structure: The encoding structure that is implicitly generated and exported
whenever a type is defined in an ASN.1 module.

ITU-T Rec. X.692 (03/2002) 3

ISO/IEC 8825-3:2003 (E)

3.2.29 initial application point: The point in an encoding structure at which any given combined encoding object set
is first applied (in the ELM and in EDMs) .

3.2.30 length determinant: A bit-field that determines the length of some other bit-field.
3.2.31 negative integer value: A value less than zero.

3.2.32 non-negative integer value: A value greater than or equal to zero.

3.2.33 non-positive integer value: A value less than or equal to zero.

3.2.34 optional bit-field: A bit-field that is sometimes included (to encode an abstract value) and is sometimes
omitted.

3.2.35 positive integer value: A value greater than zero.
3.2.36 presence determinant: A bit-field that determines whether an optional bit-field is present or not.

3.2.37 primitive class: An encoding class which is not an encoding structure, and which cannot be de-referenced to
some other class (see 16.1.14).

3.2.38 recursive definition (of a reference name): A reference name for which resolution of the reference name, or
of the governor of the definition of the reference name, requires resolution of the original reference name.

NOTE - Recursive definition of an encoding class (including an encoding structure) is permitted. Recursive definition of an
encoding object or an encoding object set is forbidden by 17.1.4 and 18.1.3 respectively.

3.2.39 recursive instantiation (of a parameterized reference name): An instantiation of a reference name, where
resolution of the actual parameters requires resolution of the original reference name.

NOTE - Recursive instantiation of an encoding class (including an encoding structure) is permitted. Recursive instantiation of an
encoding object or an encoding object set is forbidden by 17.1.4 and 18.1.3 respectively.

3.2.40 replacement structure: A parameterized structure used to replace some or all parts of a construction before
encoding the construction.

3.2.41 self-delimiting encoding: An encoding for a set of abstract values such that there is no abstract value that has
an encoding that is an initial sub-string of the encoding of any other abstract value in the set.

NOTE — This includes not only fixed-length encodings of a bounded integer, but also encodings generally described as "Huffman
encodings" (see Annex E).

3.2.42 simple reference name: A reference to an encoding class, object, or object set that includes neither the name of
the EDM module in which that encoding class, object, or object set was defined, nor (in the case of an implicitly
generated encoding class) the name of the ASN.1 module in which it was generated.

NOTE - A simple reference name can only be used when the reference to the encoding class is unambiguous, otherwise a
fully-qualified name (see 3.2.24) has to be used in the body of a module.

3.2.43 size range condition: A condition on the existence of effective size constraints on a string or repetition field
(and whether the constraint includes zero, and/or allows multiple sizes) which, if satisfied, means that specified encoding
rules are to be applied.

3.2.44 source governor (or source class): The governor that determines the notation for specifying abstract values
associated with a source class when mapping them to a target class.

3.2.45 start pointer: An auxiliary field indicating the presence or absence of an optional bit-field, and in the case of
presence, containing the offset from the current position to the bit-field.

3.2.46 target governor (or target class): The governor that determines the notation for specifying abstract values
associated with a target class when mapping to them from a source class.

3.2.47 top-level type(s): Those ASN.1 type(s) in an application that are used by the application in ways other than to
define the components of other ASN.1 types.

NOTE 1 — Top-level types may also be used (but usually are not) as components of other ASN.1 types.

NOTE 2 - Top-level types are sometimes referred to as "the application's messages", or "PDUs". Such types are normally treated
specially by tools, as they form the top-level of programming language data-structures that are presented to the application.

3.2.48 transforms: Encoding objects of the class #TRANSFORM which specify that the encoding of the abstract values
associated with some class (or of transform composites — see 3.2.49) is to be the encoding of different abstract values
associated with the same or a different class (or of transform composites).

NOTE — Transforms can be used, for example, to specify simple arithmetic operations on integer values, or to map integer values
into characterstrings or bitstrings.

4 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

3.2.49 transform composites: An ordered list of elements that can itself be the source or the result of transforms.
NOTE — All the elements of a composite are required to have the same classifcation (see 9.18.2)

3.2.50 value encoding: The way in which an encoding space is used to represent an abstract value (see 9.21.5).

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
BCD Binary Coded Decimal
BER Basic Encoding Rules of ASN.1
CER Canonical Encoding Rules of ASN.1
DER Distinguished Encoding Rules of ASN.1
ECN Encoding Control Notation for ASN.1
EDM Encoding Definition Module
ELM Encoding Link Module
PDU Protocol Data Unit
PER Packed Encoding Rules of ASN.1

S Definition of ECN syntax

51 This Recommendation | International Standard employs the notational convention defined in ITU-T
Rec. X.680 | ISO/IEC 8824-1, clause 5.

5.2 This Recommendation | International Standard employs the notation for information object classes defined in
ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by Annex B.

53 This Recommendation | International Standard references productions defined in ITU-T Rec. X.680 | ISO/IEC
8824-1 as modified by Annex A, ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by Annex B, and ITU-T Rec. X.683 |
ISO/IEC 8824-4 as modified by Annex C.

6 Encoding conventions and notation

6.1 This Recommendation | International Standard defines the value of each octet in an encoding by use of the
terms "most significant bit" and "least significant bit".

NOTE - Lower layer specifications use the same notation to define the order of bit transmission on a serial line, or the assignment
of bits to parallel channels.

6.2 For the purpose of this Recommendation | International Standard, the bits of an octet are numbered from 8
to 1, where bit 8 is the "most significant bit" and bit 1 is the "least significant bit".

6.3 For the purposes of this Recommendation | International Standard, encodings are defined as a string of bits
starting from a "leading bit" through to a "trailing bit". On transmission, the first eight bits of this string of bits starting
with the "leading bit" shall be placed in the first transmitted octet with the leading bit as the most significant bit of that
octet. The next eight bits shall be placed in the next octet, and so on. If the encoding is not a multiple of eight bits, then
the remaining bits shall be transmitted as if they were bits 8 downwards of a subsequent octet.

NOTE — A complete ECN encoding is not necessarily always a multiple of eight bits, but an ECN specification can determine the
addition of padding to ensure this property.

6.4 When figures are shown in this Recommendation | International Standard, the "leading bit" is always shown on
the left of the figure.

7 The ECN character set

7.1 Use of the term "character" throughout this Recommendation | International Standard refers to the characters

specified in ISO IEC 10646-1, and full support for all possible ECN specifications can require the representation of all
these characters.

ITU-T Rec. X.692 (03/2002) 5

ISO/IEC 8825-3:2003 (E)

7.2 With the exception of comment (as defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.6), non-ECN definition
of encoding objects (see 17.8) and character string values, ECN specifications use only the characters listed in Table 1.

7.3 Lexical items defined in clause 8 consist of a sequence of the characters listed in Table 1.
NOTE - Additional restrictions on the permitted characters for each lexical item are specified in clause 8.

Table 1 — ECN characters

0to 9 (DIGIT ZERO to DIGIT 9)

Ato Z (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z)
atoz (LATINSMALL LETTER A to LATIN SMALL LETTER Z)

" (QUOTATION MARK)

(NUMBER SIGN)

& (AMPERSAND)
(APOSTROPHE)

((LEFT PARENTHESIS)

) (RIGHT PARENTHESIS)

, (COMMA)

- (HYPHEN-MINUS)
(FULL STOP)
(COLON)

: (SEMICOLON)

< LESS-THAN SIGN

(EQUALS SIGN)

> GREATER-THAN SIGN
{ (LEFT CURLY BRACKET)
| (VERTICAL LINE)
} (RIGHT CURLY BRACKET)
7.4 There shall be no significance placed on the typographical style, size, colour, intensity, or other display
characteristics.
7.5 The upper and lower-case letters shall be regarded as distinct.
8 ECN lexical items

In addition to the ASN.1 lexical items specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 11, this
Recommendation | International Standard uses lexical items specified in the following subclauses. The general rules
specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.1, apply in this clause.

NOTE — Annex G lists all lexical items and all the productions used in this Recommendation | International Standard, identifying
those that are defined in ITU-T Rec.X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2 and ITU-T Rec. X.683 |
ISO/IEC 8824-4.

8.1 Encoding object references

Name of item — encodingobjectreference

An "encodingobjectreference" shall consist of the sequence of characters specified for a "valuereference" in ITU-T Rec.
X.680 | ISO/IEC 8824-1, 11.4. In analyzing an instance of use of this notation, an "encodingobjectreference" is
distinguished from an "identifier" by the context in which it appears.

8.2 Encoding object set references
Name of item - encodingobjectsetreference

An "encodingobjectsetreference" shall consist of the sequence of characters specified for a "typereference" in ITU-T
Rec. X.680 | ISO/IEC 8824-1, 11.2. It shall not be one of the character sequences listed in 8.4.

6 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

8.3 Encoding class references
Name of item — encodingclassreference

An "encodingclassreference" shall consist of the character "#" followed by the sequence of characters specified for a
"typereference" in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.2. It shall not be one of the character sequences listed in 8.5
except in an EDM imports list (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.19, as modified by A.1) or in an

"ExternalEncodingClassReference" (see the Note in 14.11).

8.4 Reserved word items

Names of reserved word items:

ALL FI ELDS PER- BASI C- UNALI GNED
AS FROM PER- CANONI CAL- ALl GNED
BEG N GENERATES PER- CANONI CAL- UNAL| GNED
BER I F PLUS-I NFINITY

BI TS | MPCRTS REFERENCE

BY I'N REMAI NDER

CER LI NK- DEFI NI TI ONS RENAMES

COVPLETED MAPPI NG S| ZE

DECCDE MAX STRUCTURE

DER M N STRUCTURED

DI STRI BUTI ON M NUS- I NFI NI TY TO

ENCODE NON- ECN- BEG N TRANSFCRVS

ENCCDI NG CLASS NON- ECN- END TRUE

ENCODE- DECODE NULL UNI ON

ENCCDI NG- DEFI NI TI ONS OPTI ONAL- ENCODI NG USE

END OPTI ONS USE- SET

EXCEPT ORDERED VALUES

EXPORTS QUTER WTH

FALSE PER- BASI C- ALI GNED

Items with the above names shall consist of the sequence of characters in the name.

NOTE — The words (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.9) used in the definition of encoding classes (within a "WITH
SYNTAX" statement) in clause 23 are not reserved words (see also B.14).

8.5 Reserved encoding class name items

Names of reserved encoding class name items:

#ALTERNATI VES #General String #REAL

#BI TS #G aphicString #RELATI VE- A D
#BI T- STRI NG #1 A5String #REPETI TI ON
#BMPSt ri ng #1 NT #SEQUENCE
#BOCOL #1 NTEGER #SEQUENCE- OF
#BOOLEAN #NUL #SET
#CHARACTER- STRI NG #NULL #SET- OF

#CHARS #NunericString #TAG

#CHO CE #OBJECT- | DENTI FI ER #Tel et exString
#CONCATENATI ON #Obj ect Descri ptor #TRANSFORM
#CONDI TI ONAL- | NT #OCTETS #Uni versal String
#CONDI TI ONAL- REPETI TI ON #OCTET- STRI NG #UTCTi e
#EVMBEDDED- PDV #OPEN- TYPE #UTF8Stri ng
#ENCODI NGS #OPTI ONAL #Vi deot exStri ng
#ENUVERATED #OUTER #Vi si bl eString
#EXTERNAL #PAD

#Cener al i zedTi ne

#Printabl eString

Items with the above names shall consist of the sequence of characters in the name.

8.6 Non-ECN item
Name of item — anystringexceptnonecnend

An "anystringexceptnonecnend" shall consist of one or more characters from the ISO/IEC 10646-1 character set, except
that it shall not be the character sequence NON- ECN- END nor shall that character sequence appear within it.

ITU-T Rec. X.692 (03/2002) 7

ISO/IEC 8825-3:2003 (E)

9 ECN Concepts

This clause describes the main concepts underlying this ITU-T Recommendation | International Standard.

9.1 Encoding Control Notation (ECN) specifications

9.1.1 ECN specifications consist of one or more Encoding Definition Modules (EDMs) which define encoding rules
for ASN.1 types, and a single Encoding Link Module (ELM) that applies those encoding rules to ASN.1 types.

9.1.2 The most important part of ECN is the concept of an encoding structure definition. ASN.1 is used to define
complex abstract values using primitive types and constructors. In the same way, complex encodings can be defined
using a similar notation where construction mechanisms are used to combine simple bit-fields into more complex
encodings, and eventually into complete messages. This is called encoding structure definition. In using ECN with
ASN.1, it is necessary in principle to:

a) define the abstract syntax (the set of abstract values to be communicated, and their semantics); and
b) the encoding structure (the structure of fields) used to carry these abstract values; and
c) torelate the components of the abstract value to the encoding structure fields; and

d) to define the encoding of each encoding structure field and mechanisms for identifying repetitions of
fields and identification of alternatives, etc.

9.1.3 The above process normally takes part in several stages. First an ASN.1 definition is produced detailing the
abstract syntax. From this a crude encoding structure is automatically generated (conceptually within the ASN.1
module). This implicitly generated structure contains only fields that carry the application semantics, without fields for
things like length determination, alternative selection, and so on.

9.1.4 This structure can be transformed by a series of mechanisms into the structure of fields that is actually required,
including all fields needed to support the decoding activity (determinants). These mechanisms all involve some form of
replacement of a simple field carrying application semantics by a more complex structure. Such replacements form an
important part of ECN specification.

9.1.5 We can further define encoding objects for each of the fields in the final structure. These determine not only
the encoding of fields, but also the way in which one field determines the length (for example) of another, or has its
optionality resolved.

9.1.6 The above definitions occur in Encoding Definition Modules (EDMs). The last step is to apply a set of defined
encoding objects to the final encoding structure in order to completely determine an encoding. This is done in the
Encoding Link Module (ELM).

9.2 Encoding classes

9.2.1 An encoding class is an implicit property of all ASN.1 types, and represents the set of all possible encoding
specifications for that type. It provides a reference that allows Encoding Definition Modules to define encoding rules for
encoding structure fields corresponding to the type. Encoding class names begin with the character "#".

Example: Encoding rules for the ASN.1 built-in type | NTEGER are defined by reference to the encoding class
#|1 NTEGER, and encoding rules for a user-defined type "My- Type" are defined by reference to the encoding class

#My- Type.
9.2.2 There are several kinds of encoding classes:

9.2.2.1 Built-in encoding classes — There are built-in encoding classes with names such as #INTEGER and
#BOOLEAN. These enable the definition of special encodings for primitive ASN.1 types. There are also built-in encoding
classes for encoding constructors such as #SEQUENCE, #SEQUENCE- OF and #CHO CE (see also 9.3.2), and for the
definition of encoding rules for handling optionality through #0OPTI ONAL. Encoding of tags is supported by the #TAG
class. Finally, there are some built-in classes (#OUTER, #TRANSFORM and others) that allow the definition of encoding
procedures which are part of the encoding/decoding process, but which do not directly relate to any actual bit-field or
ASN.1 construct.

9.2.2.2 Encoding classes for implicitly generated encoding structures — These have names consisting of the
character "#" followed by the "typereference" appearing in a "TypeAssignment" in an ASN.1 module. Such encoding
classes are implicitly generated whenever a (non-parameterized) "typereference" is assigned in an ASN.1 module, and
can be imported into an Encoding Definition Module to enable the definition of special encodings for the corresponding
ASN.1 type. These encoding classes represent the structure of an ASN.1 encoding, and are formed from the built-in
encoding classes mirroring the structure of the ASN.1 type definition.

8 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

9.2.2.3 Encoding classes for user-defined encoding structures — These are encoding classes defined by the ECN
user by specifying an encoding structure (see 9.3) as a structure made up of bit-fields and encoding constructors. These
encoding structures are similar to the implicitly generated encoding structures, but the ECN user has full control of their
structure. These classes enable complex encoding rules to be defined, and are important for the use of ASN.1 with ECN
for specifying legacy protocols, where additional bit-fields are needed in the encoding for determinants.

9.2.2.4 Encoding classes for explicitly generated encoding structures — These are encoding classes produced from
an implicitly generated encoding structure by selectively changing the names of certain classes in order to indicate
places where specialized encodings are needed for optionality, sequence-of termination, etc.

9.3 Encoding structures

9.3.1 Encoding structure definitions have some similarity to ASN.1 type definitions, and have a name beginning with
the character "#", then an upper-case letter. Each encoding structure definition defines a new encoding class (the set of
all possible encodings of that encoding structure). Encoding structures are formed from fields which are either built-in
encoding classes or the names of other encoding structures, combined using encoding constructors (which represent the
set of all possible encoding rules that support their type of construction mechanism, and are hence called encoding
classes). (See D.2.8.4 for an example of an encoding structure definition.)

9.3.2 The most basic encoding constructors are #CONCATENATI ON, #REPETITI ON, and #ALTERNATI VES,
corresponding roughly to ASN.1 sequence (and set), sequence-of (and set-of), and choice types. There is also an
encoding class #OPTI ONAL that represents the optional presence of encodings, corresponding roughly to ASN.1
DEFAULT and OPTI ONAL markers.

9.3.3 An encoding structure definition defines a structure-based encoding class. Such classes cannot have the same
names as encoding classes that are imported into the module. (See ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.12, as
modified by A.1 of this Recommendation | International Standard).

9.3.4 Encoding structure names can be exported and imported between Encoding Definition Modules and can be
used whenever an encoding class name in the bit-field group of categories (see 9.6) is required.

9.3.5 Values of ASN.1 types (primitive or user-defined) can be mapped to fields of an encoding structure, and
encoding rules for that structure then provide encodings of the ASN.1 type. (Values mapped to encoding structures can
be further mapped to fields of more complex encoding structures.) This provides a very powerful mechanism for
defining complex encoding rules.

9.4 Encoding objects

9.4.1 Encoding objects represent the specific definition of encoding rules for a given encoding class. Usually the
rules relate to the actual bits to be produced, but can also specify procedures related to encoding and decoding, for
example the way in which the presence or absence of optional components is determined.

9.4.2 In order to fully define the encoding of ASN.1 types (typically the top-level type(s) of an application), it is
necessary to define (or obtain from standardized encoding rules) encoding objects for all the classes that correspond to
components of those ASN.1 types and for the encoding constructors that are used.

9.4.3 For legacy protocols, this may have to be done by defining a separate encoding object for every component of
an ASN.1 type, but it is more commonly possible to use encoding objects defined by standardized encoding rules (such
as PER).

9.4.4 Although BER and PER encoding specifications pre-date ECN, within the ECN model they simply define
encoding objects for all classes corresponding to the ASN.1 primitive types and constructors (that is, for all the built-in
encoding classes). BER and PER are also considered to provide encoding objects for encoding classes used in the
definition of encoding structures (see 18.2).

9.5 Encoding object sets

9.5.1 Encoding objects can be grouped into sets in the same way as information objects in ASN.1, and it is these sets
of encoding objects that are (in an ELM) applied to an ASN.1 type to determine its encoding. The governor used when
forming these encoding object sets is the reserved word #ENCODI NGS. (See D.1.14 for an example.)

9.5.2 A fundamental rule of encoding object set construction is that any set can contain only one encoding object of a
given encoding class (see also 9.6.2). Thus there is no ambiguity when an encoding object set is applied to a type to
define its encoding.

ITU-T Rec. X.692 (03/2002) 9

ISO/IEC 8825-3:2003 (E)

9.5.3 There are built-in encoding object sets for all the variants of BER and PER, and these can be used to complete
sets of user-defined encoding objects.

9.6 Defining new encoding classes

9.6.1 Those familiar with ASN.1 will be aware that a type assignment can be used to create new names (new types)
from, for example, the types | NTEGER or BOOLEAN. The new names identify types that are the same as | NTEGER or
BOOLEAN, but carry different semantics. This concept is extended in ECN to allow the creation (in a class assignment —
see 16.1.1) of new names (new classes) for constructors such as #SEQUENCE. The new names identify classes that
perform a similar function in structuring encodings (for example, concatenation), but which are to have different
encoding objects applied to them. A new class name assigned for an old class retains certain characteristics of that old
class. So an assignment such as "#M/- Sequence ::= #SEQUENCE" creates the new class name #M/- Sequence which
is still an encoding class concerned with the concatenation of components. We say that such encoding classes are in the
same category.

9.6.2 If a new encoding class is created from an existing encoding class, encoding objects of both the old encoding
class and the new encoding class can appear in an encoding object set.

9.6.3 All built-in encoding classes are derived from one of a small number of primitive encoding classes. Thus
#SEQUENCE and #SET are both derived from the #CONCATENATI ON class, #1 NTEGER and #ENUVERATED are both derived
from the #I NT class, and the classes for the different ASN.1 character string types are all derived from the #CHARS
class. An encoding structure (for example, one implicitly generated from an ASN.1 type) can contain a mix of different
classes all derived from the same primitive class, enabling different encodings to be applied to #SEQUENCE and #SET
(for example).

9.6.4 It is often convenient to put encoding classes into categories, based on the primitive class they are derived from.
Thus we say that #1 NTEGER, #ENUVERATED and #1 NT (and any class derived from them in a class assignment statement
such as "#MWy-int ::= #I NT") are in the integer category. There are also groups of categories that contain very
different classes that share some characteristic. Thus any class that can have abstract values directly associated with it,
and hence which produces bits in an encoding, is said to be in the bit-field group of categories. Thus all classes that are
in the integer or the boolean or the characterstring category are in the bit-field group of categories. Classes that are
responsible for grouping or repeating encodings (for example classes in the alternatives or the repetition category) are in
the encoding constructor group of categories. There are also two classes whose encoding objects define procedures not
directly related to constructing an encoding (#TRANSFORM and #QUTER): these are described as being in the encoding
procedure group of categories. Encoding structures are defined using classes in the bit-field group of categories that are
combined using classes in the encoding constructor group of categories, together with classes in the optionality
(representing encoding procedures for resolving optionality) and tag (representing encoding of tags) categories. All
such classes are in the encoding structure category (and also in the bit-field group of categories).

9.6.5 For the primitive classes, the category is directly assigned. For classes created in an encoding class assignment
statement, the category is determined by the notation to the right of the ": : =" symbol. If that notation is an encoding
structure definition, then the class is in both the encoding structure category and in the bit-field group of categories. If
the notation is a simple class reference name, then the category of the new class is the same as the category of the class
being assigned.

9.6.6 The categories of encoding class (see 16.1.3) are:
— The alternatives category (classes that are derived by class assignment from #ALTERNATI VES).
— The concatenation category (classes that are derived by class assignment from #CONCATENATI ON).
— The repetition category (classes that are derived by class assignment from #REPETI TI ON).
— The optionality category (classes that are derived by class assignment from #OPTl ONAL).
— The tag category (classes that are derived by class assignment from #TAG).

— The boolean, bitstring, characterstring, integer, null, objectidentifier, octetstring, opentype, pad, and real
categories (categories for classes that are derived from the corresponding primitive classes).

— The encoding structure category (classes generated from ASN.1 type definitions, or by explicit definition
of an encoding structure).

9.6.7 The following groups of categories are defined:

— The bit-field group of categories (classes that correspond to actual fields in an encoding such as those in
the integer or boolean categories, together with any class in the encoding structure category). Classes in
this group of categories are also referred to as bit-field classes.

10 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

— The encoding constructor group of categories (classes that are in the alternatives, concatenation, or
repetition categories). Classes in this group of categories are also referred to as encoding constructor
classes.

— The encoding procedure group of categories (classes not directly related to ASN.1 constructs, and which
cannot be assigned new names — #OUTER, #TRANSFORM #CONDI Tl ONAL- | NT, #CONDI Tl ONAL-
REPETI TI ON). Classes in this group of categories are also referred to as encoding procedure classes.

9.7 Defining encoding objects

There are eight mechanisms available for defining an encoding object of a given encoding class. They are not all
available for all encoding classes.

9.7.1 The first is to specify it as the same as some other defined encoding object of the required class. This does
nothing more than provide a synonym for encoding objects.

9.7.2 The second, available for a restricted set of encoding classes, is to use a defined syntax (see 17.2) to specify the
information needed to define an encoding object of that class. Much of the information needed is common to all
encoding classes, but some of the information always depends on the specific encoding class. (See D.1.1.2 for an
example of defining an encoding object of class #BOOLEAN which contains encodings for the ASN.1 type boolean.)

9.7.3 The third, available for all encoding classes, is to define an encoding object as the encoding of the required
class which is contained in some existing encoding object set. This is mainly of use in naming an encoding object for a
particular class that will perform BER or PER encodings for that class.

NOTE - This can often be useful, but requires knowledge of the encodings produced by standardized encoding rules.

9.7.4 The fourth is to map the abstract values associated with an encoding class ("#A", say) to abstract values
associated with another (typically more complex) encoding class ("#B", say), and to define an encoding object for "#B"
(using any of the available mechanisms). An encoding object for the abstract values associated with "#A" can now be
defined as the application to the corresponding abstract values associated with "#B" of the encoding object for "#B".
(See D.2.8.3 for an example.) There are many variants of this (see 9.17).

NOTE — This is the model underlying the definition of an object for encoding an integer type in BER. The integer is mapped to an

encoding structure that contains a tag class (UNI VERSAL, APPLI CATI ON, PRI VATE, or context-specific) field, a
primitive/constructor boolean, a tag number field, and a value part that encodes the abstract values of the original integer.

9.7.5 The fifth mechanism is to define an encoding object for a class (for example, one corresponding to a
user-defined ASN.1 type) by separately defining encoding objects for the components and for the encoding constructor
used in defining the encoding class.

9.7.6 The sixth is to define an encoding object for differential encoding-decoding (see 9.8), using two separate
encoding objects, one of which defines the encoder's behaviour, and the other of which tells a decoder what encoding
should be assumed.

NOTE — An example would be to encode a field which is "reserved for future use" as all zeros, but to accept any value when
decoding.

9.7.7 The seventh is to define an encoding options encoding object, which contains an ordered list of encoding
objects of the same class. It is an encoder's choice which encoding object from the list is to be applied, subject to the
restriction that if only one encoding option can encode a given abstract value, that shall be used, and to the
recommendation that the first available encoding in the list should be used.
NOTE — An encoding options encoding object could, for example, be used in the specification of short-form length encodings
where these can encode a particular string length, using long-form length encodings where the short-form cannot be used. There is

no current mechanism for the ECN specifier to require the use of the first available encoding object (if more than one can encode
the abstract value), other than by comment.

9.7.8 Finally, an encoding object can be defined using non-ECN notation. This is a facility to allow use of any
desired notation (including natural language) to define the encoding object (see D.2.7.3).

NOTE — Non-ECN notation should be used with caution, as tool-support for implementation is generally not possible in this case.

9.8 Differential encoding-decoding

9.8.1 Differential encoding-decoding is the term applied to a specification that requires an implementation to accept
(when decoding) bit-patterns that are in addition to those that it is permitted to generate when performing encoding.

9.8.2 Differential encoding-decoding underlies all support for "extensibility" (the ability for an implementation of an
earlier version of a standard to have good interworking capability with an implementation of a later version of the
standard).

ITU-T Rec. X.692 (03/2002) 11

ISO/IEC 8825-3:2003 (E)

9.8.3 The precise nature of differential encoding-decoding can be quite complex. It normally includes the
requirement that a decoder accepts (and silently ignores) padding fields (usually variable length) which later versions of
a standard will use for the transfer of information additional to that transferred in the early version communication.

9.8.4 Support for differential encoding-decoding in ECN is provided by syntax that enables the definition of an
encoding object (for any class) that encapsulates two encoding objects. Each encoding object defines rules for encoding.
The first encoding object defines the rules that an encoder uses. The decoder uses the second encoding object as a
specification of the way the encoding was done.

NOTE — In ECN, the rules a decoder uses (in an early version of a standard) are always expressed by giving the rules for

encoding that it should assume its communicating partner is using. The decoding rules are not given as explicit decoding rules.
The ECN specifier will ensure that such decoding rules provide any necessary "extensibility".

9.9 Encoders options in encodings

9.9.1 Encoders options in protocols are generally regarded today as something to be avoided, but ECN has to provide
support for such options if a protocol designer decides (or has in the past decided) to include them.

9.9.2 When values are being encoded into an encoding space, it is possible to specify that the size of the encoding
space (see 9.21.5) is an encoder's option, provided there is some form of length determinant associated with the
encoding. (The extent of the encoder's options may be limited by the maximum value that can be encoded in the length
determinant.) This provides a detailed level of support for encoder's options.

9.9.3 A more global mechanism is similar to the support for differential encoding-decoding (see 9.8), but in this case
an encoding object for a class can be defined as an encoder's choice of any encoding object from an ordered list of
defined encoding objects for that class. In addition to specifying the list of possible encodings, it is also necessary to
provide the specification of an encoding object for a class in the alternatives category (see 9.6). This encoding object
specifies the encodings and procedures needed to enable a decoder to determine which encoding object was used by the
encoder.

9.10 Properties of encoding objects

9.10.1 Encoding objects have some general properties. In most cases, they completely define an encoding, but in
some cases they are encoding constructors, that is, they define only structural aspects of the encoding, requiring
encoding objects for the encoding structure's components to complete the definition of an encoding.

9.10.2 Another key feature of an encoding object is that it may require information from the environment where its
rules are eventually applied. One aspect of the environment that is fully supported is the presence of bounds in the
ASN.1 type definition, provided they are "PER-visible" (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 9.3).

NOTE — A somewhat different (and not standardized) external dependency would be the definition of a non-ECN encoding object

for an #ALTERNATI VES encoding class which determines the selected alternative based on external data such as the channel the
message is being sent on.

9.10.3 A third key feature is that an encoding object may exhibit an identification handle in its encodings. This is a
part of all the encodings that it produces and distinguishes its encodings from encodings of other encoding objects (of
any class) that exhibit the same identification handle. Identification handles have to be visible to decoders without
knowledge of either the encoding class or the abstract value that was encoded (but with knowledge of the name of the
identification handle that is being used). This concept models (and generalizes) the use of tags in BER encodings: the
tag value in BER can be determined without knowledge of the encoding class, for all BER encodings, and serves to
identify the encoding for resolution of optionality, ordering of sets, and choice alternatives.

9.11 Parameterization

9.11.1 As with ASN.1 types and values, encoding objects, encoding object sets and encoding classes can be
parameterized. This is just an extension of the normal ASN.1 mechanism.

9.11.2 A primary use of parameterization is in the definition of an encoding object that needs the identification of a
determinant to complete the definition of the encoding (see 9.13.2). (See D.1.11.3 for an example of a parameterized
ECN definition.)

9.11.3 Another important use of parameterization is in the definition of an encoding structure that will be used to
replace many different classes in an encoding (see also 9.16.5). For example, the mechanism used to handle optionality
is often an immediately (mandatory) preceding "presence-bit" for each optional component. A parameterized structure
can be defined consisting of a concatenation of a #BOCLEAN (used as a presence determinant) followed by an optional
component defined as a dummy parameter (which will be instantiated with the component that the structure will
replace), and whose presence is determined by the #BOOLEAN. The original #OPTI ONAL encoding procedure is now

12 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

defined as the replacement of the original component with this mandatory structure, using the original optional
component as the actual parameter. (D.3.2 is a more complete example of this process.)

9.11.4 Dummy parameters may be encoding objects, encoding object sets, encoding classes, references to encoding
structure fields, and values of any of the ASN.1 types used in the built-in encoding classes defined in clause 23, as
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4 as modified by B.10 of this Recommendation | International Standard.

9.11.5 The modification of parameterization syntax that is specified in Annex C requires the use of the symbol "{ <"
(without spaces) instead of "{ " to start a dummy or actual parameter list, and of ">} " to end one.

NOTE — This was done to make parsing of ECN syntax easier for computers, and to avoid ambiguity when user-defined classes
are used in structure definitions in place of #SEQUENCE, #CHO CE, #REPETI TI O\, #SEQUENCE- OF, or #SET- OF.

9.12 Governors

9.12.1 The concept of a governor and of governed notation will be familiar from ASN.1 value notation, where there is
always a type definition that "governs" the value notation and determines its syntax and meaning.

9.12.2 The same concept extends to the definition of encoding objects of a given encoding class. The syntax for
defining an encoding object of class #BOOLEAN (for example) is very different from the syntax for defining an encoding
object of class #I NTEGER (for example). In all cases where an encoding object definition is required, there is some
associated notation that defines the class of that encoding object, and "governs" the syntax to be used in its specification.

9.12.3 The ECN syntax requires governors that are encoding classes to be class reference names, or parameterized
class reference names.

9.12.4 If the governed notation is a reference name for an encoding object, then that encoding object is required to be
of the same class as the governor (see 17.1.7).

9.13 General aspects of encodings

9.13.1 ECN provides support for a number of techniques typically used in defining encoding rules (not just those
techniques used in BER or PER). For example, it recognizes that optionality can be resolved in any of three ways: by
use of a presence determinant, by use of an identification handle (see 9.13.3), or by reaching the end of a
length-delimited container (or the end of the PDU) before the optional component appears.

9.13.2 Similarly, it recognizes that delimitation of repetitions can be done (for example) by:
— Some form of length count.
— Detecting the end of a container (or PDU) in which it is the last item.
— Use of an identification handle on each of the repetitions and on following encodings (see 9.13.3).

— Some terminating pattern that can never occur in an encoding in the repeated series. (A simple example
is a null-terminated character string.)

— Use of a "more bit" with each element, set to one to indicate that another repetition follows, and set to
zero to indicate the end of the repetition.

ECN supports all these mechanisms for delimitation of repetitions, and similar mechanisms for identification of
alternatives and for resolution of optionality.

9.13.3 In addition to terminating repetitions, the identification handle technique can also be used to determine the
presence of optional components or of alternatives. The mechanism is similar in all these cases. Encodings for all values
of any given "possible next class" encoding will have the same bit-pattern (their identification) at some place in their
encoding (the handle), but the identification for different "possible next class" encodings will be different for each one.
All such encodings can be interpreted by a decoder as an encoding of any "possible next class", and the identification for
the handle will determine which "possible next class" encoding is present. The concept is similar to that of using tags
for such purposes in BER. Identification handles have names that are required to be unique within an ECN
specification.

9.13.4 It is important here to note that ECN allows the definition of encodings in a very flexible way, but cannot
guarantee that an encoding specification is correct — that is, that a decoder can successfully recover the original abstract
values from an encoding. For example, an ECN specifier could assign the same bit-pattern for boolean values true and
false. This would be an error, and in this case a tool could fairly easily detect the error. Another error would be to claim
that an encoding was self-delimiting (and required no length determinant), when in fact it was not. This error could also
be detected by a tool. In more subtle and complex cases, however, a tool may find it very hard to diagnose an erroneous
(one that cannot always be successfully decoded) specification.

ITU-T Rec. X.692 (03/2002) 13

ISO/IEC 8825-3:2003 (E)

9.14 Identification of information elements

9.14.1 Many protocols have an encoding (usually of a fixed number of bits) to identify what are often called
"information elements" or "data elements" in a protocol. These identifications correspond roughly to ASN.1 tags, but are
usually less complex. They are often used as identification handles, but are not always so used.

9.14.2 ECN contains a #TAG class to support the definition of the encoding of information element identifiers through
use of the ASN.1 tag notation. (It also supports the inclusion of such elements within an encoding structure with no
reference to ASN.1 tags.)

9.14.3 When an encoding structure is implicitly generated from an ASN.1 type definition (see clause 11), the first
textually-present ASN.1 tag notation in that definition generates an instance of the #TAG class, with the number of the
ASN.1 tag associated with that instance of the #TAGclass. Subsequent textually present instances of ASN.1 tag notation
are not mapped into #TAG classes in the implicitly generated structure, but these tags and their values become properties
of the element. An encoding for this encoding class can be defined in a similar way to an encoding for the #| NTEGER
class, and will encode the number in the tag notation.

9.14.4 The full ASN.1 tag-list (multiple tags each with a class and number) is notionally associated with all the
abstract values of a tagged type, in accordance with the ASN.1 model. Such information is, however, only accessible in
the current version of ECN through a non-ECN definition of an encoding object (see 9.7.8). The generation of a #TAG
class is a separate mechanism, is simpler and more specific, and has full support within ECN.

9.14.5 1t is, however, important to note that for the purposes of generating a #TAGcclass, it is only textually-present tag
notation that is visible. Universal class tags and tags generated by automatic tagging are not visible. Similarly, the class
of any textually present tag notation is ignored. Only the tag number is available to encoding objects of the #TAG class.

9.15 Reference fields and determinants

9.15.1 A very common (but not the only) way of determining the presence of an optional field, the length of a
repetition, or the selection of an alternative is to include (somewhere in the message) a determinant field. Determinant
fields have to be identified if this mechanism is used for determination, and this frequently requires a dummy parameter
of an encoding object definition, with the actual parameter, providing the encoding structure fieldname of the
determinant, being supplied when the encoding object is applied to an encoding structure.

9.15.2 A new concept — a reference field — is introduced to satisfy the need for a dummy parameter that references an
encoding structure field. The governor is the reserved word REFERENCE, and the allowed notation for an actual
parameter with this governor is any encoding structure field name within the encoding structure to which an encoding
object or encoding object set with such a parameter is being applied (see 17.5.15). (See D.1.11.3 for an example of
references to encoding structure fieldnames.)

9.16 Replacement classes and structures

9.16.1 When writing ASN.1 specifications for legacy protocols (or in order to generate specialized encodings for new
protocols), it is normal to ignore encoding issues and, in particular, determinant fields that are present solely to support
decoding. Only fields of relevance to application code (carrying application semantics) are included in the ASN.1
specification.

9.16.2 When such protocols use more than one encoding mechanism to support (for example) SEQUENCE OF
constructions in different places in the protocol, it is not possible (nor would it be appropriate) to formally specify this
within the ASN.1 itself.

9.16.3 This means that the implicitly generated encoding structure will not distinguish between such constructions, nor
will it contain encoding-related fields for determinants, and it is necessary to modify it to "correct" both problems before
a structure is available that matches the encoding requirements.

9.16.4 The first and simplest modification is to replace some instances of a class (within the implicitly generated
structure) with new class names that have been assigned the old class in a class assignment statement. This is done by
creating an explicitly generated structure using a renames clause in an EDM. This clause imports an implicitly
generated structure from an ASN.1 module and makes specified replacements of (textual) occurrences of named classes.
The replacement can be of all occurrences textually within a list of implicitly generated classes (corresponding to the
ASN.1 type definitions in a module), or within components of one of those classes, or "all occurrences except" those in a
given definition or a given component (see 15.3). It is important here to note that these replacements are restricted to the
use of classes that have been defined with an encoding class assignment statement that assigns the name of a
replacement class to an old class (for example: "#Repl acerment-cl ass ::= #0d d-cl ass"), so this mechanism is

14 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

sometimes colloquially referred to as "coloring". The "coloring" identifies those parts of the specification that require
different encodings from other parts. (An example of "coloring" is given in D.3.7.)

9.16.5 Even with "coloring", the explicitly generated encoding structure, like the implicitly generated encoding
structure, contains only fields corresponding to the fields in the ASN.1 specification, and it is usually necessary to
modify the generated structures to add fields for determinants, etc. A new replacement structure is needed (for all or
part of the original structure), with added fields. It is also important to identify (for each field in the original structure)
which fields of the replacement structure (and what abstract values of that field) are used to carry the semantics of the
original abstract values. We talk about mapping the abstract values from the original structure to the replacement
structure.

9.16.6 There are many mechanisms for defining an encoding object for an existing structure as an encoding object for
a totally different replacement structure, with defined value mappings between the old structure and the replacement
structure. These mechanisms are described in 9.17.

9.16.7 A simpler situation frequently occurs, however, in which the designer requires the old structure to form (in its
entirety) a single component of the replacement structure, with all abstract values being mapped from the old structure to
the corresponding value of that component of the replacement structure. For this mechanism to be of general use, the
replacement structure needs to have a dummy parameter for this single component, and for it to be instantiated with the
actual parameter set to the old structure. This was described in 9.11.3.

9.16.8 When defining encoding objects for a class (any class), it is always possible to specify that the first action of
that encoding object is to replace the class it is encoding with a parameterized replacement structure, instantiated as
described in 9.16.7, and with abstract values mapped from the old class to the component.

9.16.9 1t is also possible to define encoding objects for the #OPTI ONAL class (or for any class of the optionality
category) that replace the optional component with a parameterized replacement structure (frequently one containing a
#BOOLEAN field as a presence determinant). (An example of this is given in D.3.2.3.)

9.16.10 For constructor classes such as #CONCATENATI ON, #REPETI TI O\, and so on, it is also possible to define
encoding objects that replace not the entire structure, but each component separately (or just mandatory, or just optional,
components).

9.16.11 A more advanced, but powerful, mechanism is to require the replacement action to also include the insertion of
a specified field at the head of a #CONCATENATI ON (or similar structure). An example of this is given in D.3.1.5.

9.17 Mapping abstract values onto fields of encoding structures
There are six mechanisms provided for this.

9.17.1 The first is to map specified abstract values associated with one simple encoding class to specified abstract
values associated with another simple encoding class. This can be used in many ways. For example, values of a
character string (of digits) can be mapped to integer values (and hence encoded as integer values). Values of an
enumerated type can be mapped to integer values, and so on (see 19.2). (See D.1.10.2 for an example.)

9.17.2 The second is to map a complete field of one encoding structure into a field of a compatible encoding structure,
which can contain additional fields — typically for use as length or choice determinants (see 19.3). (See D.2.8.3 for an
example.)

9.17.3 The third is to map by transforming all the abstract values associated with one encoding class into abstract
values associated with a different (typically, but not necessarily) encoding class, using a transform encoding object (see
9.18). With this mechanism, it is, for example, possible to map an #| NTEGER into a #CHARS to obtain characters that can
then be encoded in whatever way is desired (for example, Binary-Coded Decimal or ASCII). (See D.1.6.3 for an
example.)

9.17.4 The fourth mapping mechanism is to use a defined ordering of the abstract values of certain types and
constructions, and to map according to the ordering. This provides a very powerful means of encoding abstract values
associated with one encoding class as if they were abstract values associated with a wholly unrelated encoding class (see
19.5). (See D.1.4.2 for an example.)

9.17.5 The fifth mechanism is to distribute the abstract values (using value range notation) associated with one
encoding class (typically #1 NTEGER) into the fields of another encoding class. (See 19.6 and D.2.1.3 for examples.)

9.17.6 The final mechanism allows the ECN specifier to provide an explicit mapping from integer values (which may
have been produced by earlier mappings from, for example, an #ENUMERATED class) to the bits that are to be used to
encode those values. This is intended to support Huffman encodings, where the frequency of occurrence of each value
is (at least approximately) known, and where the optimum encoding is required. Annex E describes Huffman encodings

ITU-T Rec. X.692 (03/2002) 15

ISO/IEC 8825-3:2003 (E)

in more detail, and gives examples of this mechanism, together with a reference to software that will generate the ECN
syntax for these mappings, given only the relative frequency with which each value of the integer is expected to be used
(see 19.7).

9.18 Transforms and transform composites

9.18.1 Transforms are encoding objects of the class #TRANSFORM They can be used to transform abstract values
between different encoding classes, and can also be used to define simple arithmetic functions such as multiplication by
a fixed value, subtraction of a fixed value, and so on. When applied in succession, they enable general arithmetic to be
specified (see 19.4). (See D.2.4.2 for an example.)

9.18.2 A transform can take a single value as its source and then produces a single value as its result. The following is
a classification of the values that can be sources and results of transforms:

— an integer;

— aboolean;

— acharacterstring;
— abitstring;

— asingle character;

— asingle bit (source only, supporting the encoding of a bitstring — see 23.2).

9.18.3 Transform composites are an ordered list of elements, each of which is a single value and has the same
classification (as listed in 9.18.2). (For example, an ordered list of single characters, or of single octets, or of integers.)
They are only produced as the result of transforms, and can only be used as the source of a following transform.

9.18.4 If the classification is bitstring, the size of each bitstring value in the composite is the same, and is statically
determined by the transform that produces the composite. (For example, an ordered list of single bits, or of six-bit units.)

9.18.5 There are transforms from the following abstract values to composites:
— characterstring to a single character composite;
— bitstring to a bitstring composite (all bitstring values of the composite are of the same size);

— octetstring to a bitstring composite (all bitstring values of the composite are of size 8 bits).

9.18.6 There are transforms from the following composites to abstract values:
— single character composites to characterstring values;
— bitstring composites to bitstring values;

— bitstring composites (with bitstring values of size 8 bits) to octetstring values.

9.18.7 All other transforms can take a value as their source and produce a new value (of the same or of a different
classification). They can also take a transform composite as their source and produce a composite as its result,
transforming each element of the source composite into an element of the result composite.

9.19 Contents of Encoding Definition Modules

9.19.1 Encoding Definition Modules (or EDMs) contain export and import statements exactly like ASN.1 (but can
import only encoding objects, encoding object sets, and encoding classes from other EDM modules, or from ASN.1
modules in the case of implicitly generated encoding structures).

9.19.2 An EDM can also contain a renames clause (see clause 15) which references implicitly generated encoding
structures from one or more ASN.1 modules and generates, by "coloring" them (see 9.16.4), an explicitly generated
encoding structure for each one. These explicitly generated encoding structures are available for use within the EDM,
but are also automatically exported for possible import into the Encoding Link Module.

9.19.3 The body of an EDM module contains:

"EncodingObjectAssignment" statements that define and name an encoding object for some encoding
class (there are eight forms of this statement, discussed in 9.7 and defined in clause 17).

"EncodingObjectSetAssignment" statements that define sets of encoding objects (see clause 17).

"EncodingClassAssignment" statements that define and name new encoding classes (see clause 15).

9.19.4 The EDM can also contain parameterized versions of these statements, as specified in clause 14 and in C.1.

16 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

9.19.5 Encoding objects can be defined for built-in encoding classes within any EDM module. Encoding objects can
be defined for a generated encoding structure only in EDM modules that import the implicitly generated encoding
structure from the ASN.1 module that defines the corresponding type (using either an imports or a renames clause), or
that import the generated encoding structure from an EDM module that has exported it.

NOTE - If an implicitly generated encoding structure happens to have a name that is the same as a reserved encoding class name

(see 8.5), it can still be imported into an EDM, but must be referenced in the body of the EDM using a fully-qualified name (see
"ExternalEncodingClassReference" in 10.6).

9.20 Contents of the Encoding Link Module

9.20.1 All applications of the Encoding Control Notation require the identification of a single Encoding Link Module
(or ELM).

9.20.2 The ELM module applies encoding object sets to ASN.1 types (formally, to a generated encoding structure
corresponding to the ASN.1 type). These encoding object sets (or their constituent encoding objects) are imported into
the ELM module from one or more EDM modules.

9.20.3 There are restrictions on the application of encoding object sets to ensure that there is no ambiguity about the
actual encoding rules that are being applied (see 12.2.5). For example, it is not permitted for an ELM to apply more than
one encoding object set to a specific implicitly generated structure.

9.20.4 It is possible in simple cases for an ELM module to contain just a single statement (following an imports
clause) that applies an encoding object set to the implicitly generated encoding structure corresponding to the single
top-level type of an application. (See D.1.17 for an example.)

9.21 Defining encodings for primitive encoding classes

9.21.1 Encoding rules for some primitive encoding classes can be defined using a user-friendly syntax which is
specified in the W TH SYNTAX statements of encoding class definitions (see clauses 23 and 25). This syntax can also be
used to define encoding rules for encoding classes derived from these primitive encoding classes (by encoding class
assignment statements).

9.21.2 The notation used for the encoding class definitions in clauses 23 and 25 is based on the notation used for
information object class definition. This syntax (and its associated semantics) is defined by reference to ITU-T Rec.
X.681 | ISO/IEC 8824-2 as modified by Annex B of this Recommendation | International Standard.

9.21.3 The encoding class definition specifies the information that has to be supplied in order to define encoding rules
for particular encoding classes. The set of encoding rules that can be defined in this way is not, of course, all possible
rules, but is believed to cover the encoding specifications that ECN users are likely to require.

9.21.4 These encoding class definitions specify a series of fields (with corresponding ASN.1 types and semantics).
Encoding rules are specified by providing values for these fields. The values of these fields are effectively providing the
values of a series of encoding properties which collectively define an encoding.

9.21.5 The meaning of the encoding properties is specified using an encoding model (see Figure 1) where the value of
each bit-field class produces a value encoding which is placed (left or right justified) into an encoding space.

9.21.6 The encoding space may have its leading edge aligned to some boundary (such as an octet boundary) by
encoding space pre-padding, and its size can be fixed or variable. The value encoding fits within it, perhaps left or right
justified, and with padding around it. If the size of the encoding space is variable, then either the value encoding has to
be self-delimiting, or there has to be some external mechanism to enable a decoder to determine the size of the encoding
space. Several mechanisms are available for this determination.

9.21.7 Finally, the complete encoding space with the value encoding and any value pre-padding and value
post-padding, is mapped to bits-on-the-line with an optional specification of bit-reversal. This handles encodings that
require "most significant byte first" or "most significant byte last" for integers, or that require the bits within an octet to
be in the reverse of the normal order.

9.21.8 Thus there are three broad categories of information needed:
- the first relates to the encoding space in which the encoding is placed;

- the second relates to the way an abstract value is mapped to bits (value encoding), and the positioning of
those bits within the encoding space; and

— the third relates to any required bit-reversals.

ITU-T Rec. X.692 (03/2002) 17

ISO/IEC 8825-3:2003 (E)

9.21.9 Figure 1 shows the encoding space (with pre-padding) and the value encoding (with value pre-padding and
value post-padding). Figure 1 also illustrates the specification of an encoding space unit. The encoding space is always
an integral multiple of this specified number of bits.

101011110 <«

Encoding so far

Value pre-padding Alignment from start of encoding]

I 1
| |
| |
| |
Encoding space

A

/
/l

|
—>

:
[
[
[
R
g
|
T
[
|
|
[
[
i
[
[

|
|
|
|
|
7 .
[I
| I
T T
[I
T
| w N (] |
Encoding space pre-padding R ! 10011001'00100100
" I
| T
| |
' i
| |
| |
| |
: : ne

Encoding space unit Value-encoding

—— L=

N — —
— X.692_F1

Encoding then added to bits-on-the-line,
possibly with bit, octet, etc. , reversal

Figure 1 — Encoding space, value-encoding and padding concepts

9.21.10 If the encoding space is not the same size for all values encoded by an encoding object, then some additional
mechanism is needed to determine the actual encoding space used in an instance of an encoding.

9.21.11 It is also possible to specify an arbitrary amount of encoder pre-padding (beyond that needed for alignment)
that ends when the value of an earlier start pointer identifies the start of a field.

9.21.12 The steps in a definition of an encoding for a primitive bit-field encoding class are:

Specify the alignment (if any) required for the leading edge of the encoding space (relative to the
alignment point — normally the start of the encoding of the top-level type, that is, the type to which an
encoding object set is applied in the ELM). (See 22.2.)

Specify the form of any necessary padding to that point (encoding space pre-padding). (See 22.2.)
Specify (if necessary) a field that provides a pointer to the start-point of the encoding space. (See 22.3.)
Specify the encoding of abstract values into bits (value encoding).

Specify the units of the encoding space (the encoding space will always be an integral multiple of these
units). (See 22.4.)

Specify the size of the encoding space in these units. This may be fixed (using knowledge of integer or
size bounds associated with the abstract values to be encoded), or variable (different for each abstract
value). The specification may also (in all cases) specify the use of a length determinant that has to be
encoded with the length of the field, and either enables decoding or provides redundant information (in
the case of a fixed-size encoding space) that a decoder can check. (See 22.4.)

Specify the alignment of the value encoding within the encoding space. (See 22.8.)

Specify the form of any necessary padding from the start of the encoding space to the start of the value
encoding (value pre-padding). (See 22.8.)

Specify the form of any necessary padding between the end of the value encoding and the end of the
encoding space (value post-padding). (See 22.8.)

Specify any necessary bit-reversals of the encoding space contents before adding the bits to the encoding
done so far. (See 22.12.)

9.21.13 Encoding properties are available to support the specification of the encoding rules for all these steps.

18

ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

9.21.14 In real cases, only some (or none!) of these encoding properties will have unusual values, and defaults operate
if they are not specified. (See D.1.3 for an example of the definition of the encoding for an integer that is right-aligned
in a fixed two-octet field, starting at an octet boundary.)

9.22 Application of encodings

9.22.1 Application of encodings (encoding rules) to encoding structures is a key part of the ECN work, but is very
distinct from the definition of the encoding rules. Final application of encodings (to an encoding structure generated
from an ASN.1 type definition) only occurs within an Encoding Link Module, but application of encodings to fields of
an encoding structure may be used in the definition of encodings for a larger encoding structure.

9.22.2 Encodings are applied by reference to an encoding object set (or to a single encoding object). Such application
can occur in an EDM in the definition of encoding objects for any class (including encoding objects for a generated
encoding structure and for a user-defined encoding structure). Such application in an EDM is merely the definition of
more encoding objects for that encoding class: The definitive application to an actual type occurs only in the ELM.

9.22.3 When a set of encoding objects is being applied, it always results in a complete encoding specification for the
encoding classes to which the objects are applied. If, in any given application, encodings are needed for encoding
classes (present within an encoding structure being encoded) for which there are no encoding objects in the set being
applied, then this is an error (see 13.2.11).

NOTE — Although the specification of the encoding rules will be complete, the precise form of the actual encoding (for example,

the presence or absence of encoding space pre-padding, or the effect of the values of bounds referenced in the encoding rules) can
only be determined when the encoding definition is applied to a top-level ASN.1 type.

9.22.4 There are two exceptions to 9.22.3. The first exception is when the (ASN.1-like) parameterization mechanism
is used to define a parameterized encoding object. In such cases the complete encoding is only defined following
instantiation with actual parameters. The second exception is when an encoding object is defined for an encoding
constructor (#CONCATENATI ON, #ALTERNATI VES, #REPETI Tl ON, #SEQUENCE, etc.). In this latter case, the encoding
rules associated with the encoding class simply define the rules associated with the structuring aspects. A complete
encoding specification for an encoding structure using these encoding classes will also require rules for encoding the
components of that encoding structure.
NOTE — There is a distinction here between encoding objects of class #SEQUENCE (an encoding constructor) and encoding
objects for an implicitly generated encoding structure "#My- Type" (which happens to be defined using the ASN.1 type
SEQUENCE). The latter is not an encoding constructor, and encoding objects of this class will provide full encoding rules for the
encoding of values of type "My- Type".

9.23 Combined encoding object set

9.23.1 In order to provide a complete encoding, the ECN user can supply a primary encoding object set, and a second
encoding object set introduced by the reserved words COVPLETED BY.

9.23.2 The encoding object set that is applied is defined to be the combined encoding object set formed by adding to
the first set encoding objects for any encoding class for which the first set is lacking an encoding object and the second
set contains one (see 13.2). A frequent set to use with COVPLETED BY is the built-in set PER- BASI C- UNAL|I GNED.
(See D.1.17 for an example of the application of a combined encoding object set.)

9.23.3 While an encoding object set can contain only one encoding object for a class #SEQUENCE- OF (for example), it
can also contain an encoding object for a class #Speci al - sequence-of (for example) which is defined as
"#Speci al - sequence-of ::= #SEQUENCE- OF". An explicitly generated encoding structure can have both the
#SEQUENCE- OF class and also the #Special-sequence-of class in its definition. In this way, a single combined encoding
object set can be applied to produce standard encodings for some of the original SEQUENCE OF constructs, and
specialized encodings for others.

9.24 Application point

9.24.1 In any given application of encodings, there is a defined starting point (for the ELM, it is the top-level
generated encoding structure(s) to which encodings are being applied). This is called the "initial application point" for
the structure that is being encoded by the ELM.

9.24.2 The combined encoding object set is applied to a generated encoding structure, and it is the encodings defined
for the abstract values of this encoding structure that encode the abstract values of the ASN.1 type.

9.24.3 If there is an encoding object in the combined encoding object set that matches a bit-field encoding class
(initially a generated encoding structure) at the application point, it is applied and the process terminates. Otherwise the
class at the application point is "expanded" by de-referencing. This expansion by de-referencing will continue until

ITU-T Rec. X.692 (03/2002) 19

ISO/IEC 8825-3:2003 (E)

either an encoding object is found, or a primitive class is reached. If the class at the application point is an encoding
constructor, and there is an encoding object for that encoding constructor (#CHO CE, #SEQUENCE, #SEQUENCE- OF, etc.),
then it is applied, and the application point then passes to each component (as a parallel activity).

9.24.4 1In a more complex case, there may be an #OPTI ONAL class following a component class (and a #TAG class
preceding it). The application point passes first to the #OPTI ONAL, and the encoding object for that class may replace the
component (see 9.16.9). Then the application point passes to the tag, and finally to the component itself.

9.25 Conditional encodings

9.25.1 Mention has already been made of the #TRANSFORMencoding class as a means of performing simple arithmetic
on integer values (see 9.17.3). This encoding class does, however, play a more fundamental role in the specification of
encodings for some primitive classes. In general, the specification of encodings for many of the ASN.1 built-in types is a
two or a three stage process, using encoding objects of class #TRANSFORM and (for example) of class
#CONDI TI ONAL- | NT or #CONDI TI ONAL- REPETI TI ON.

9.25.2 The #TRANSFORM #CONDI TI ONAL- | NT, and #CONDI TI ONAL- REPETI Tl ON encoding classes are restricted in
their use. Encoding objects can only be defined for these classes using either the syntax of clause 24, 23.7 and 23.13
respectively, or by non-ECN definition of an encoding object, and they can only be used in the definition of other
encoding objects. They cannot appear in encoding object sets or be applied directly to encode fields of encoding
structures (see 18.1.7).

9.25.3 Encoding specification for encoding classes in the integer category proceeds as follows: Encodings (of the
#CONDI TI ONAL- | NT encoding class) are defined for a particular bounds condition, specifying the container size (and
how it is delimited), the transform of the integer to bits (using either two's complement or positive integer encodings),
and the way these bits fit into the container. (An example of a bounds condition is the existence of an upper bound and a
non-negative lower bound.) This is called a conditional encoding. The encoding of the class in the integer category is
defined as a list of these conditional encodings, with the actual encoding to be applied in any given circumstance being
the one that is earliest in the list whose bounds condition is satisfied. (See D.1.5.4 for an example.)

9.25.4 Encoding specification for encoding classes in the repetition category use the #CONDI TI ONAL- REPETI TI ON
encoding class, which defines the way in which the encoding space for the repeated items is delimited and how the
repeated encodings are to be placed into it, for a given range condition, again producing a conditional encoding. As
with the encoding of classes in the integer category, the final encoding is defined as an ordered list of conditional
encodings.

9.25.5 Encoding specification for the encoding classes in the octetstring category proceeds as follows: First,
#TRANSFORM encoding objects are defined to map a single octet to a self-delimiting bitstring. Second, one or more
#COONDI TI ONAL- REPETI TI ON encoding objects (for specific size-range conditions) are defined to take each of the
bitstrings (transformed from an octet in the octet string) and to concatenate them into a delimited container (the
definition of such encoding objects is not specific to encoding #OCTETS). The final encoding of the class in the
octetstring category is defined as an ordered list of #CONDI TI ONAL- REPETI TI ON encoding objects. (See D.1.8.2 for an
example.)

9.25.6 Encoding specifications for encoding classes in the bitstring category proceeds as follows: First, #TRANSFORM
encoding objects are defined to map a single bit into a bitstring, similar to the encoding of an integer into bits, but in this
case the mapping of the bit must be to a self-delimiting string. Secondly, one or more #CONDI TI ONAL- REPETI Tl ON
encoding objects are defined for the repetition of the bits (these could be the same encoding objects that were defined for
use with an encoding class in the repetition or octetstring categories). Finally, the encoding of the class in the bitstring
category is defined as an ordered list of #CONDI TI ONAL- REPETI TI ON encoding objects. (See D.1.7.3 for an example.)

9.25.7 Encoding specifications for encoding classes in the characterstring category proceeds as follows: First,
#TRANSFORMencoding objects are defined to map a single character to a self-delimiting bitstring, using several possible
mechanisms for defining the encoding of the character, and using the effective permitted alphabet constraint where it is
available. Secondly, one or more #CONDI TI ONAL- REPETI TI ON encoding objects are defined, and finally the encoding
of the class in the characterstring category is defined as an ordered list of these. (See D.1.9.2 for an example.)

9.26 Changes to ASN.1 Recommendations | International Standards

9.26.1 This Recommendation | International Standard references other ASN.1 Recommendations | International
Standards in order to define its notation without repetition. For such references to be correct, the semantics of the
notation (for example the imports clause, parameterization, and information object definition) needs to be extended to
recognize the reference names of encoding classes, encoding objects, and so on that form part of ECN.

20 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

9.26.2 There is also a need to extend the information object class notation to allow fields that are ordered lists of
values or objects, not just unordered sets of objects, in order to allow the use of that notation in the definition of ECN
syntax for the definition of encoding objects of certain classes.

9.26.3 Finally, the rules for parameterization are relaxed to allow a dummy parameter of an encoding object reference
(being assigned in an assignment statement) to be used as an actual parameter of the encoding class reference which
governs the notation defining the encoding object reference name. In particular, a parameterized encoding class can be
used as a governor in an encoding object assignment statement (see C.2/8.4), with the actual parameter being a dummy
parameter of the encoding object that is being defined.

9.26.4 These modifications to other ASN.1 Recommendations | International Standards are specified in Annexes A to
C, and are solely for the purposes of this Recommendation | International Standard.

10 Identifying encoding classes, encoding objects, and encoding object sets

10.1 Many of the productions within this Recommendation | International Standard require that an encoding class,
encoding object, or encoding object set be identified.

10.2 For each of these, there are five ways in which identification can be made:
a) Using a simple reference name.

b) Using a built-in reference name (not applicable for encoding objects, as there are no built-in encoding
objects).

¢) Using an external reference (also called a fully-qualified name).
d) Using a parameterized reference.
e) In-line definition.

NOTE - The parameterized reference form may be used with a simple reference name or with an external reference (see C.3).

10.3 There are productions (or lexical items) for all of these means of identification. There are also productions that
allow several alternatives. These lexical items or production names are used where appropriate in other productions, and
are defined in the remainder of this clause.

10.4 The lexical items for use of a simple reference name are:
encoding class "encodingclassreference" (see 8.3)
encoding object "encodingobjectreference" (see 8.1)
encoding object set "encodingobjectsetreference" (see 8.2)

10.4.1 An "encodingclassreference" is a name which is either:
a) assigned an encoding class in an "EncodingClassAssignment" (see clause 16); or is
b) imported into an EDM from some other EDM from which it has been exported; or is

¢) imported as the name of an implicitly generated encoding structure from an ASN.1 module (see 14.11); or
is

d) generated by a renames clause in the EDM (see clause 15).
NOTE - Only classes that are generated encoding structures can be imported into an ELM (see 12.1.8).

10.4.2 An "encodingclassreference" shall not be imported from an EDM module (as specified in 10.4.1) unless either:

a) itis defined in or imported into the referenced module, and that module has no exports clause; or
NOTE 1 — If the referenced module has no exports clause, this is equivalent to exporting everything.
b) it is defined in or imported into the referenced module, and appears as a symbol in the exports clause of
that module; or
c) it is one of the reference names explicitly generated by a renames clause in the module from which it is
being imported.
NOTE 2 — Implicitly generated encoding structures can only be imported from the ASN.1 module which generates them.

10.4.3 An implicitly generated encoding structure reference never appears in the exports clause of any ASN.1 module,
but can always be imported from any ASN.1 module in which the corresponding type is defined and exported.

10.4.4 An explicitly generated encoding structure reference (which is automatically exported by the renames clause
which generates it) shall not appear in the exports clause of the EDM module in which it is generated, but any use of it
in another EDM or the ELM requires its importation from that EDM module.

ITU-T Rec. X.692 (03/2002) 21

ISO/IEC 8825-3:2003 (E)

10.4.5 An "encodingobjectreference" is a name which is either:
a) assigned an encoding object in an "EncodingObjectAssignment" (see clause 17) in an EDM; or is

b) imported into an EDM or an ELM from some other EDM in which it is either assigned an encoding
object or is imported.

10.4.6 An "encodingobjectreference" shall not be imported from an EDM if the referenced module has an exports
clause and the "encodingobjectreference" does not appear as a symbol in that exports clause.

NOTE - If the referenced module has no exports clause, this is equivalent to exporting everything.
10.4.7 An "encodingobjectsetreference"” is a name which is either:
a) assigned an encoding object set in an "EncodingObjectSetAssignment" (see clause 18) in an EDM; or is

b) imported into an EDM or an ELM from some other EDM in which it is either assigned an encoding object
set or is imported.

10.4.8 An "encodingobjectsetreference" shall not be imported from an EDM if the referenced module has an exports
clause and the "encodingobjectsetreference" does not appear as a symbol in that exports clause.

NOTE - If the referenced module has no exports clause, this is equivalent to exporting everything.

10.5 The productions for use of a built-in reference name are:
encoding class "BuiltinEncodingClassReference' (see 16.1.6)
encoding object set "BuiltinEncodingObjectSetReference" (see 18.2.1)
10.6 The productions for use of an external reference name are:

ExternalEncodingClassReference ::=
modulereference "." encodingclassreference |
modulereference "." BuiltinEncodingClassReference

ExternalEncodingObjectReference ::=
modulereference "." encodingobjectreference

ExternalEncodingObjectSetReference ::=
modulereference "." encodingobjectsetreference

10.6.1 The "modulereference" is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.5, and identifies a module which
is referenced in the imports list of the EDM or ELM.

10.6.2 The "ExternalEncodingClassReference" alternative that includes a "BuiltinEncodingClassReference" shall be
used in the body of an EDM if and only if there is a generated encoding structure (whose name is the same as that of a
"BuiltinEncodingClassReference") which is either:

a) defined implicitly in the ASN.1 module referenced by the "modulereference" (see 11.4.1); or

b) imported into another EDM referenced by the "modulereference" and exported from that module; or

c) generated in a renames clause of another EDM referenced by the "modulereference"; or

d) generated in this EDM in a renames clause, in which case the "modulereference” shall refer to this EDM.

NOTE - The "BuiltinEncodingClassReference" name can appear as a "Symbol" in the imports clause (see A.1)

10.6.3 The productions defined in 10.6 (except as specified in 10.6.2) shall be used if and only if the corresponding
simple reference name has been imported from the module identified by the "modulereference", and either:

a) identical reference names have been imported from different modules, or have been generated in a
renames clause in this EDM, or have been both imported and generated; or

b) the simple reference name is a "BuiltinEncodingClassReference" (see 10.5); or
¢) Dboth conditions hold.

10.7 A parameterized reference is a reference name defined in a "ParameterizedAssignment" (see C.1) and supplied
with an actual parameter in accordance with the syntax of C.3. The productions involved are:

encoding classes "ParameterizedEncodingClassAssignment" (see C.1)
"ParameterizedEncodingClass' (see C.3)

encoding objects "ParameterizedEncodingObjectAssignment" (See C.1)
"ParameterizedEncodingObject" (See C.3)

22 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

encoding object sets "ParameterizedEncodingObjectSetAssignment" (See C.1)
"ParameterizedEncodingObjectSet" (See C.3)

10.8 The productions that allow all forms of identification are:
encoding classes "EncodingClass" (See clause 16.1.5)
encoding objects "EncodingObject" (See clause 17.1.5)
encoding object sets "EncodingObjectSet" (See clause 18.1)
10.9 The productions which allow all forms except in-line definition are:
encoding classes "DefinedEncodingClass" and ""DefinedOrBuiltinEncodingClass"
encoding objects "DefinedEncodingObject"

encoding object sets "DefinedEncodingObjectSet" and "DefinedOrBuiltinEncodingObjectSet"

except that built-in encoding classes and built-in encoding object sets are not allowed by "DefinedEncodingClass" and
"DefinedEncodingObjectSet".

NOTE - A further production "SimpleDefinedEncodingClass" is also used. This is defined in C.3 and allows only
"encodingclassreference" and "ExternalEncodingClassReference".

10.9.1 The "DefinedEncodingClass" and "DefinedOrBuiltinEncodingClass are:

DefinedEncodingClass ::=
encodingclassreference
| ExternalEncodingClassReference
| ParameterizedEncodingClass

DefinedOrBuiltinEncodingClass ::=
DefinedEncodingClass
| BuiltinEncodingClassReference

10.9.2 The "DefinedEncodingObject" is:

DefinedEncodingObject ::=
encodingobjectreference
| ExternalEncodingObjectReference
| ParameterizedEncodingObject

10.9.3 The "DefinedEncodingObjectSet" and "DefinedOrBuiltinEncodingObjectSet" are:

DefinedEncodingObjectSet ::=
encodingobjectsetreference
| ExternalEncodingObjectSetReference
| ParameterizedEncodingObjectSet

DefinedOrBuiltinEncodingObjectSet ::=
DefinedEncodingObjectSet
| BuiltinEncodingObjectSetReference

11 Encoding ASN.1 types

11.1 General

11.1.1 For all ASN.1 types, there is a corresponding implicitly generated encoding structure. This encoding structure
is implicitly generated for each ASN.1 type assignment, and is automatically exported from the ASN.1 module that
contains that type assignment. (It does, however, have to be imported into an EDM module if it is to be used.) The
name of the corresponding encoding structure is the name of the type preceded by a character "#". This encoding
structure defines an encoding class, and is called an implicitly generated encoding structure.

11.1.2 There may also be one or more explicitly generated encoding structures. These are generated in an EDM
using a renames clause.

11.1.3 The encoding of an ASN.1 type is formally defined as the result of encodings applied to precisely one of the
encoding structures (implicitly or explicitly) generated from the ASN.1 type. The encodings are applied by statements
in the ELM (see clause 12), using encoding objects in a combined encoding object set. An ELM shall apply encodings to
at most one of the generated encoding structures corresponding to any given ASN.1 type.

ITU-T Rec. X.692 (03/2002) 23

ISO/IEC 8825-3:2003 (E)

11.1.4 The implicitly generated encoding structure is defined by first simplifying and expanding the ASN.1 notation
(as specified in 11.3), and then by mapping ASN.1 types, type constructors and component names into corresponding
built-in encoding classes, encoding constructors and encoding structure fieldnames.

11.1.5 An explicitly generated encoding structure is defined by making specified changes to the implicitly generated
encoding structure using a renames clause.

11.1.6 Each field of a generated encoding structure has associated with it the abstract values of the corresponding type,
and constraint-related information derived from the ASN.1 type definition (see 11.4.2). Encodings of the abstract values
of the generated encoding structure are defined to be the encodings for the corresponding abstract values of the original
ASN.1 type.

11.1.7 This clause 11 specifies:

a) The built-in encoding classes that are used in defining the implicitly generated encoding structures
corresponding to ASN.1 types (see 11.2).

NOTE — Subclause 16.1.14 specifies additional classes that are used in the definition of user-defined
encoding structures.

b) Transformations of the ASN.1 syntax (simplification and expansion) before the implicitly generated
structure is produced (see 11.3).

¢) The implicitly generated encoding structure for any ASN.1 type (see 11.4).

11.2 Built-in encoding classes used for implicitly generated encoding structures

11.2.1 The encoding classes used for implicitly generated encoding structures, and the ASN.1 types or constructors to
which they correspond are listed in Table 2 below.

11.2.2 Column 1 gives the ASN.1 notation which is replaced by an encoding class in the implicitly generated encoding
structure. Column 2 gives the encoding class that replaces the column 1 notation. Column 3 gives the primitive class
that the column 2 class is derived from.

Table 2 — Encoding classes for ASN.1 notation

ASN.1 notation Primitive Class

Encoding Class

24 ITU-T Rec. X.692 (03/2002)

BIT STRING #BIT-STRING #BITS

BOOLEAN #BOOLEAN #BOOL

CHARACTER STRING #CHARACTER-STRING Defined using #SEQUENCE
CHOICE #CHOICE #ALTERNATIVES
EMBEDDED PDV #EMBEDDED-PDV Defined using #$SEQUENCE
ENUMERATED #ENUMERATED #INT

EXTERNAL #EXTERNAL Defined using #SEQUENCE
INTEGER #INTEGER #INT

NULL #NULL #NUL

OBJECT IDENTIFIER #OBJECT-IDENTIFIER #OBJECT-IDENTIFIER
OCTET STRING #OCTET-STRING #OCTETS

open type notation #OPEN-TYPE #OPEN-TYPE
OPTIONAL #OPTIONAL #OPTIONAL

REAL #REAL #REAL
RELATIVE-OID #RELATIVE-OID #OBJECT-IDENTIFIER
SEQUENCE #SEQUENCE #CONCATENATION
SEQUENCE OF #SEQUENCE-OF #REPETITION

SET #SET #CONCATENATION
SET OF #SET-OF #REPETITION
GeneralizedTime #GeneralizedTime #CHARS

UTCTime #UTCTime #CHARS
ObjectDescriptor #ObjectDescriptor #CHARS

BMPString #BMPString #CHARS

GeneralString #GeneralString #CHARS

GraphicString #GraphicString #CHARS

IASString #IASString #CHARS

NumericString #NumericString #CHARS

PrintableString #PrintableString #CHARS

TeletexString #TeletexString #CHARS
UniversalString #UniversalString #CHARS

UTF8String #UTF8String #CHARS

VideotexString #VideotexString #CHARS

ISO/IEC 8825-3:2003 (E)

VisibleString #VisibleString #CHARS
Textually present tag notation ~ #TAG #TAG

11.3 Simplification and expansion of ASN.1 notation for encoding purposes

11.3.1 ECN assumes that certain ASN.1 syntactic constructs have been expanded (or reduced) into equivalent or
simpler constructions.

NOTE - The types defined by the simpler constructions are capable of carrying the same set of abstract values as the original
ASN.1 syntactic structures, and those abstract values are mapped to the simpler constructions.

11.3.2 The expansion or simplification of ASN.1 syntactic productions is either:
a) fully-defined in clause 11.3.4 below; or

b) referenced in those clauses as "See 11.3.2 b" and fully-defined in ITU-T Rec. X.680 | ISO/IEC 8824-1
(including Annex F) with all published amendments and technical corrigenda; or

¢) referenced in those clauses as "See 11.3.2 ¢" and fully-defined in ITU-T Rec. X.681 | ISO/IEC 8824-2
with all published amendments and technical corrigenda.

d) referenced in those clauses as "See 11.3.2 d" and fully-defined in ITU-T Rec. X.683 | ISO/IEC 8824-4
with all published amendments and technical corrigenda.

11.3.3 The ASN.1 syntactic constructs removed by the expansions and simplifications below are not referenced further
in this Recommendation | International Standard.

11.3.4 The following expansions and simplifications shall be applied to all ASN.1 modules:

11.3.4.1 The following transformations are not recursive and hence are applied only once:

a) All "ValueSetTypeAssignment"s shall be replaced by their equivalent "TypeAssignment"s with subtype
constraints. (See 11.3.2 b.)

b) The ASN.1 I NSTANCE OF construction shall be expanded into its equivalent sequence type. (See
11.3.2¢)

c¢) "TypeFromObject" shall be replaced with the type that is referenced. (See 11.3.2 c.)
d) "ValueSetFromObjects" shall be replaced with the type that is referenced. (See 11.3.2 c.)

e) Where an instance of ASN.1 tag notation is textually followed by one or more further instances of ASN.1
tag notation, the second and subsequent instances of tag notation are discarded.

NOTE — This is similar to the rules for implicit tagging in ASN.1, but applies for all tagging environments.
Multiple tagging of the same type is still possible through the use of type reference names.

11.3.4.2 The following transformations shall be applied recursively in the specified order, until a fixed-point is reached:

a) All ASN.1 parameterization shall be fully resolved by the substitution of actual parameters for dummy
parameters. (See 11.3.2d.)

NOTE - This means that where ASN.1 type notation contains an instantiation of an ASN.1 parameterized
type, that instantiation becomes an inline definition.

b) All "ComponentsOf's shall be expanded to their full form. (See 11.3.2 b.)
c) All uses of "SelectionType" shall be resolved. (See 11.3.2 b.)

11.3.4.3 The following transformations shall then be applied:

a) Named number lists in integer type definitions shall be removed. Named numbers are not visible to ECN.
ECN sees a single #1 NTEGER class (possibly with bounds as specified in 11.3.4.3 c).

b) Named bit lists in bitstring definitions shall be removed. Named bits are not visible to ECN.

¢) All non-PER-visible constraint notation, except the contents constraint, shall be discarded. PER-visible
constraints shall be resolved to provide the following values that can be referenced in the definition of
encoding rules:

i) Anupper bound on integers and enumerations;
i) A lower bound on integers and enumerations;

iii) The PER effective permitted alphabet and effective size constraints (see ITU-T Rec. X.691 |
ISO/IEC 8825-2, 9.3).

d) If there is a contents constraint with a CONTAI NI NG construction, then the existence of the contents
constraint, its contents type, and the presence or absence of an ENCODED BY clause become properties

ITU-T Rec. X.692 (03/2002) 25

ISO/IEC 8825-3:2003 (E)

associated with the abstract values of such a constrained octetstring or bitstring type, and the constraint
shall then be discarded. If there is a contents constraint with no CONTAI NI NG construction, then it is not
visible to ECN and shall be discarded.

NOTE — When specifying encodings for values with an associated contents constraint, a separate
combined encoding object set can be supplied to encode the contents type. This can be specified to
override or not to override any ENCOCDED BY that is present, as a designer's option (see 11.3 and 13.2).

e) All tagging which is not textually present in the ASN.1 notation shall be ignored in the mapping to
encoding structures, but (in order to model BER encodings and PER procedures) the full tag-list of a type
becomes a property of the field of the encoding structure to which the corresponding values are mapped.

f) Textually present tag notation has the class of the tag removed. (See also 11.3.4.1 e.)

g) "DEFAULT Value" shall be replaced by "OPTI ONAL- ENCODI NG #OPTI ONAL" and the default value is
associated with the field of the structure to which the ASN.1 component is mapped.

h) OPTI ONAL shall be replaced by "OPTI ONAL- ENCODI NG #OPTI ONAL".
i) T61Stri ng shall be replaced by #Tel et exStri ng.
j) 1S0646Stri ng shall be replaced by #Vi si bl eStri ng.

11.3.4.4 Finally, the following transformations shall then be applied:

a) Automatic allocation of values to enumerations (if applicable) shall be performed. The ENUMERATED
syntax shall be replaced by the #ENUMERATED encoding class with an upper bound and lower bound set.
(See 11.3.4.3¢c.)

NOTE 1 — The #ENUMERATED class de-references to the #1 NT class (see 11.2.2), and the enumerations map into
bounded integer values of the class. The actual names of enumerations are not visible to ECN.

b) All occurrences of "ObjectClassFieldType" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 14) that refer
to a type field, a variable-type value field, or a variable-type value set field shall be replaced by the
#OPEN- TYPE encoding class. (See 11.3.2 c.)

c¢) Extensibility markers and version brackets in sequence, set and choice constructions are removed, but (in
order to model BER encodings and PER procedures) the identification of a component as part of the root
or of version 1, version 2, etc. becomes a property of the component, and the existence of the extensibility
marker becomes a property of the class the construction maps to.

d) The extensibility marker in constraints is removed, but the existence of the extensibility marker becomes a
property of the class and whether an abstract value is in the root or is in an extension becomes a property
of the abstract value.

NOTE 2 — The properties referenced in items c¢) and d) above can only be interrogated through non-ECN

definition of encoding objects in this version of this Recommendation | International Standard. Full support for
extensibility is expected to be provided in a later version of this Recommendation | International Standard.

11.3.5 With these transformations, all ASN.1 type-related constructs have corresponding encoding classes, listed in
Table 2. The implicitly generated encoding structure shall be constructed by mapping the ASN.1 type-related constructs
in column 1 to the classes in column 2 of Table 2 (as specified in 11.4).

11.4 The implicitly generated encoding structure

11.4.1 There is an implicitly generated structure for each ASN.1 type definition with a name constructed from the
ASN.1 type reference name by the pre-fixing of a "#" character. Where a fully-qualified name is required for an
implicitly generated encoding structure, that fully-qualified name shall include the "Moduleldentifier" of the ASN.1
module containing the type definition. (An example of an implicitly generated structure is given in D.1.9.2.)

NOTE — An implicitly generated structure is generated and exported for each ASN.1 type in an ASN.1 module whether or not that
type is listed in the EXPORTS clause.

11.4.2 The implicitly generated encoding structure has the same structure as the ASN.1 type definition, with:
a) ASN.1 component identifiers are mapped to encoding structure fieldnames.

b) ASN.I notation in column 1 of Table 2 are mapped to the built-in encoding classes in column 2 of
Table 2.

NOTE 1 — The first textually present tag maps into a "[#TAQ " construction in the implicitly generated structure.
The implicitly generated structure does not contain any "[#TAQ " constructions for subsequent textually present
tags.

c¢) ASN.l "DefinedType"s are mapped to an encoding class name derived from the typereference by the
addition of a character "#". If a type is imported into the ASN.1 module, any

26 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

"ExternalEncodingClassReference" to the corresponding class in an implicitly generated structure shall
reference the ASN.1 module that contains the definition of the referenced type.
NOTE 2 — If the resulting class is the name of a built-in encoding class, then all references to it in either the
renames clause, or in the ELM, will use the "ExternalEncodingClassReference" notation.

d) Abstract values are mapped from a field of the type definition to the corresponding field of the encoding
structure.

e) Upper and lower bounds on integer and enumerated types and all effective size constraints and effective
permitted alphabet constraints (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 9.3) are mapped from the type
definition to the corresponding field of the encoding structure.

f) The tag number of the first textually present tag maps to the #TAGcclass.

11.4.3 Three further implicitly generated structures are produced and exported from all ASN.1 modules. These
structures have names #CHARACTER- STRI NG #EMBEDDED- PDV and #EXTERNAL, and the structures that they de-
reference to are the implicitly generated structures corresponding to the associated types for CHARACTER STRI NG
EMBEDDED PDV and EXTERNAL, specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 40.5, 33.5 and 34.5 respectively.

11.4.4 All implicitly generated encoding structures can be encoded by the built-in encoding object sets (see 18.2), and
will produce the same encodings as are specified by the corresponding Recommendation | International Standard for
those encodings when applied to ASN.1 types.

12 The Encoding Link Module (ELM)

NOTE - There are two top-level productions in ECN, the "ELMDefinition" specified in this clause and the "EDMDefinition"
specified in clause 14. These specify the syntax for defining the ELM and EDMs respectively.

12.1 Structure of the ELM
12.1.1 The "ELMDefinition" is:

ELMDefinition ::=

Moduleldentifier
LI NK- DEFI NI TI ONS

BEGI N
ELMModuleBody
END

12.1.2 In any given application of ECN, there shall be precisely one ELM which determines the encoding of all the
messages used in that application.

NOTE — The ASN.1 type(s) defining "messages" are often referred to as "top-level types".
12.1.3 The production "Moduleldentifier" (and its semantics) is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1.

12.1.4 The "Moduleldentifier" provides unambiguous identification of any module in the set of all ASN.1, ELM, and
EDM modules.

12.1.5 The "ELMModuleBody" is:

ELMModuleBody ::=
Imports ?
EncodingApplicationList

EncodingApplicationList ::=
EncodingApplication
EncodingApplicationList ?

12.1.6 The production "Imports" (and its semantics) is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1, 12.15,
and 12.16, as modified by A.1 of this Recommendation | International Standard.

12.1.7 All reference names used in the "ELMModuleBody" shall be imported into the ELM.

NOTE - This is a stronger requirement than that imposed for ASN.1 modules. In ASN.1 modules external references can be used
for types and values that have not been imported. In an ELM module (and in an EDM module) external references can only be
used for encoding classes that have been referenced in an imports clause. The purpose of external references is solely to resolve
ambiguities between imported names and built-in names, or between two identical names imported from different modules.

12.1.8 The "Imports" makes available within the ELM:

ITU-T Rec. X.692 (03/2002) 27

ISO/IEC 8825-3:2003 (E)

a) implicitly generated encoding structures from an ASN.1 module;

b) explicitly generated encoding structures from an EDM module;

NOTE — When an ELM imports an explicitly generated encoding structure from an EDM, the renames clauses in
other EDMs have no effect on the encoding of that structure (see 15.2.4).

¢) objects and encoding object sets from an EDM module.

12.1.9 The "EncodingApplicationList" is required to contain at least one "EncodingApplication", as the sole function
of an ELM is to apply encodings.

12.2 Encoding types
12.2.1 An "EncodingApplication" is:

EncodingApplication ::=
ENCODE
SimpleDefinedEncodingClass "," +
CombinedEncodings

12.2.2 An "EncodingApplication" defines the encoding of the ASN.1 types corresponding to the
"SimpleDefinedEncodingClass"es which shall be generated encoding structures. The encoding of the types is specified
by the "CombinedEncodings" applied to the generated encoding structures as specified in 13.2.

NOTE - It will be common for an ELM to encode a single type of a single module, but where multiple types are encoded, ECN
tool-vendors may (but need not) assume that this implicitly identifies top-level types needing support in generated data-structures.

12.2.3 Encodings applied to a generated encoding structure corresponding to an ASN.1 type defined in some ASN.1
module are linked solely to the use of that type as application messages. They have no implications on the encoding of
that type when referenced by other types or when exported from that ASN.1 module and imported into a different
ASN.1 module.

12.2.4 The encoding of the type in a content constraint is that specified by the encoding object applied to the
containing class in the octetstring or bitstring category, and can be any combined encoding object set, or can be the
combined encoding object set that was applied to the containing class in the octetstring or bitstring category.

12.2.5 An ELM shall not apply encodings more than once to the same ASN.1 type.

NOTE — The rules of application of encodings (specified in clause 13) mean that an "EncodingApplication" completely defines
the encoding of a type unless it contains an instance of a contents constraint.

13 Application of encodings

13.1 General

13.1.1 Encodings are applied by the ELM to a generated structure (or independently to multiple generated structures)
using a "CombinedEncodings" definition as specified in 13.1.3. This clause, together with 13.2, specifies the application
of "CombinedEncodings" to a generated encoding structure.

13.1.2 In the ELM, the application is to the generated encoding structures identified in the "EncodingApplication".
Later clauses also specify the application of encodings to all or part of an arbitrary encoding structure definition. This
clause is applicable in both cases.

13.1.3 The "CombinedEncodings" is:

CombinedEncodings ::=
WITH
PrimaryEncodings
CompletionClause ?

CompletionClause ::=
COMPLETED BY
SecondaryEncodings

PrimaryEncodings ::= EncodingObjectSet

SecondaryEncodings ::= EncodingObjectSet
13.1.4 "EncodingObjectSet" is defined in 18.1.1.

28 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

13.1.5 The use of "CombinedEncodings" is specified in 13.2.

13.2 The combined encoding object set and its application
13.2.1 A combined encoding object set is formed from the "CombinedEncodings" production (see 13.1.3) as follows:
13.2.2 Ifthere is no "CompletionClause", then the "PrimaryEncodings" form the combined encoding object set.

13.2.3 Otherwise,
a) all encoding objects in the "PrimaryEncodings" are placed in the combined encoding object set; then

b) every encoding object in the "SecondaryEncodings" is added to the combined encoding object set if (and
only if) there is no encoding object already in the combined encoding object set that has the same
encoding class (see 17.1.7 and 9.23.2).

13.2.4 Following this conceptual construction of the combined encoding object set, encoding commences with the
"encodingclassreference” name of the encoding structures identified in the encoding application (see 13.1.2 and 17.5).

13.2.5 Where there are several encoding applications in the ELM, the rules of 12.2 ensure that applications are
non-overlapping. They proceed independently. Similarly, the application of encodings to encoding structures in EDMs
(specified in 13.2.10) are always non-overlapping. The following subclauses provide the rules for application to a single
encoding structure.

13.2.6 Encoding objects from the combined encoding object set are applied at an application point. The application
point is initially the "encodingclassreference" for a generated encoding structure (when application is in the ELM, as
specified in 13.1.2) or is a component of an encoding structure (when application is in an EDM, as specified in 17.5).

13.2.7 Any encoding class in the alternatives, concatenation, and repetition categories (see 16.1.8, 16.1.9 and 16.1.10)
is an encoding constructor.

13.2.8 The term "component" in the following text refers to any of the following:
a) The alternatives of a constructor that is in the alternatives category.
b) The field following a constructor that is in the repetition category.
¢) The components of a constructor that is in the concatenation category.
d) A contained type (a type specified in a contents constraint).

e) The type chosen (in an instance of communication) for use with a class in the opentype category.

13.2.9 At later stages in these procedures, the application point may be on any of the following:

a) An encoding class name. This is completely encodable using the specification in an encoding object of
the same class (see 17.1.7).

b) An encoding constructor (see 16.2.12). The construction procedures can be determined by the
specification contained in an encoding object of the encoding constructor class, but that encoding object
does not determine the encoding of the components. The specification of the encoding object that is
applied may require that one or more of the components of the constructor are replaced by other
(parameterized) structures before the application point passes to the components.

¢) A class in the bitstring or octetstring category that has a contained type as a property associated with the
values (see 11.3.4.3 d). The encoding of the contained type depends on whether there is an ENCODED BY
present, and on the specification of the encoding object being applied (see 22.11).

d) A component which is an encoding class (possibly preceded by one or more classes in the tag category),
followed by an encoding class in the optionality category. The procedures and encodings for determining
presence or absence are determined by the specification contained in an encoding object of the class in the
optionality category. This encoding object may also require the replacement of the encoding class
(together with all its preceding classes in the tag category) with a (parameterized) replacement structure
before that class is encoded. The application point then passes to the first class in the tag category (if any),
or to the component, or to its replacement.

e) An encoding class preceded by an encoding class in the tag category. The tag number associated with the
class in the tag category is encoded using the specification in an encoding object of the class in the tag
category, and the application point then passes to the tagged class.

f) Any other built-in encoding class. This is completely encodable using the specification contained in an
encoding object of that class.

13.2.10 Encoding proceeds as follows:

ITU-T Rec. X.692 (03/2002) 29

ISO/IEC 8825-3:2003 (E)

13.2.10.1 If the combined encoding object set contains an encoding object of the same class (see 17.1.7) as the current
application point, then that encoding object is applied. This application may cause replacement of one or more
components of the class to which the encoding is being applied. If the combined encoding object set does not contain
such an encoding object, then either:

a) the encoding class at the current application point is a reference to another encoding class; in this case it is
de-referenced, and the procedures of 13.2.10 are recursively applied; or

b) the encoding class at the current application point is not a reference to another encoding class; in this case
the ECN specification is in error.

13.2.10.2 If an encoding has been applied at the application point to the encoding class, and it is not in the optionality or
tag category and does not have any components (see 13.2.7), then that application completely determines the encoding
of the class and terminates these procedures.

13.2.10.3 If an encoding has been applied at the application point to an encoding class that is in the optionality category
then the application point passes to the (possibly tagged) optional component.

13.2.10.4 If an encoding has been applied at the application point to an encoding class that is in the tag category then the
application point passes to the tagged element, and the procedures of 13.2.10 are recursively applied.

13.2.10.5 If an encoding has been applied at the application point to an encoding class that has components which are
not a contained type, then the procedures of 13.2.10 are applied recursively to each component.

NOTE — This implies that the current combined encoding object set is applied to the type chosen (in an instance of
communication) for use with a class in the opentype category (see 13.2.8).

13.2.10.6 If an encoding has been applied to an encoding class at the application point that has a component that is a
class in the bitstring or octetstring category with a contained type associated with the values, then there are four cases
that can occur:

a) The contents constraint contains an ENCODED BY, and the encoding object for this class either does not
contain a specification of the encoding of the contained type, or specifies that it should not override an
ENCODED BY (see 22.11). In this case the ENCODED BY specification shall be used for the contained type,
and the application point passes to the contained type using this encoding specification.

b) The contents constraint contains an ENCODED BY, but the encoding object for this class contains a
specification of the encoding of the contained type, and specifies that it should override an "ENCODED
BY". In this case, the specification in the encoding object shall be applied to the contained type, and the
application point passes to the contained type using this encoding specification.

¢) The contents constraint does not contain an ENCODED BY and the encoding object for this class contains a
specification of the encoding of the contained type. In this case, the specification in the encoding object
is applied to the contained type, and the application point passes to the contained type using this encoding
specification.

d) The contents constraint does not contain an ENCODED BY, and the encoding object for this class does not
contain a specification of the encoding of the contained type. In this case the combined encoding object
set being applied to the class shall also be applied to the contents type, and the application point passes to
the contained type using this encoding specification.

13.2.10.7 If there is no encoding object in the combined encoding object set of the same class (see 17.1.7) as the current
application point, and the current application point is a reference name, then it is de-referenced and these procedures are
applied recursively to the new encoding structure.

13.2.10.8 Otherwise the ECN specification is in error.

13.2.11 The above algorithm can be summarized as follows: The combined encoding object set is applied in a top-down
manner. If in this process an encoding structure reference name is encountered and there is an object in the combined
encoding object set that can encode it, that object determines its encoding. Otherwise, the reference name is expanded
by de-referencing. If at any stage an encoding is required (and does not exist) for an encoding class that cannot be
de-referenced, then the ECN specification is incorrect, and the combined encoding class is said to be incomplete. When
a primitive bit-field class is reached, the encoding terminates with the encoding of that class, except that if it has a
contained type, encoding proceeds to the generated encoding structure corresponding to the contained type. When a
type with components is reached, the process continues by applying the combined encoding object set to each
component independently. When tags and optionality are involved, the optionality class is encoded first, then the
encoding class in the tag category, and finally the element. When encodings are applied to constructor classes they may
cause replacement of one or more components. When they are applied to an optionality class they may cause
replacement of the entire element (apart from the optionality class, but including any encoding class in the tag category).

30 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

13.2.12 In the encoding process, encoding objects applied to encoding constructors (and to classes in the optionality
category) may require that the encoding objects applied to their components exhibit identification handles (of a given
name) to resolve alternatives, or optionality, or order in a set-like concatenation. If in this case the encodings of the
components do not exhibit the required identification handles, then the ECN specification is in error.

NOTE - This problem is most likely to arise if BER encoding objects are applied to encoding constructors and not to their
components, as BER is heavily reliant on identification handles. PER encoding objects make no use of identification handles.

14 The Encoding Definition Module (EDM)

NOTE - There are two top-level productions in ECN, the "EDMDefinition" specified in this clause and the "ELMDefinition"
specified in clause 12. These specify the syntax for defining EDMs and the ELM respectively.

14.1 The "EDMDefinition" is:

EDMDefinition ::=
Moduleldentifier
ENCODING-DEFINITIONS

Moozt

BEGIN

EDMModuleBody

END
14.2 In any given application of ECN, there are zero, one or more EDMs which define encoding objects for
application in the ELM.

NOTE - If there are zero EDMs, then only built-in encoding object sets can be used in the ELM.
14.3 The production "Moduleldentifier" (and its semantics) is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1.

144 The "Moduleldentifier" provides unambiguous identification of any module in the set of all ASN.1, ELM, and
EDM modules.

14.5 The "EDMModuleBody" is:

EDMModuleBody ::=
Exports ?
RenamesAndExports ?
Imports ?
EDMAssignmentList ?

EDMAssignmentList ::=
EDMAssignment
EDMAssignmentList ?

EDMAssignment ::=
EncodingClassAssignment
| EncodingObjectAssignment
| EncodingObjectSetAssignment
| ParameterizedAssignment

14.6 The productions "Exports" and "Imports" (and their semantics) are defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 12.1, as modified by A.1 of this Recommendation | International Standard.

14.7 The "Exports" makes available for import into other EDMs (and the ELM) any reference name defined in or
imported into the current EDM except that of an implicitly generated structure. The "Symbol" in the "Exports" can
reference any encoding class (except a built-in encoding class or an implicitly generated structure), an encoding object,
or an encoding object set. The "Symbol" shall have been defined in this EDM, or imported into it.

NOTE — When the name of an imported implicitly generated encoding structure is a built-in encoding class reference, it can be

used within the EDM with a fully-qualified name. An implicitly generated encoding structure can never be exported from an
EDM (however, encoding structures defined using it can, of course, be exported).

14.8 The production "RenamesAndExports" is defined in clause 15.

14.9 The "RenamesAndExports" (called the renames clause) makes available (within the EDM) explicitly generated
encoding structures derived from the implicitly generated encoding structures in specified ASN.1 modules. It also makes
these explicitly generated encoding structures available for import into other EDMs (and the ELM). (See clause 15.)

14.10 The "Imports" makes available (within the EDM) encoding classes, encoding objects and encoding object sets
exported from other EDMs or automatically exported from ASN.1 modules.

ITU-T Rec. X.692 (03/2002) 31

ISO/IEC 8825-3:2003 (E)

14.11 All ASN.1 modules that define non-parameterized type reference names automatically produce and export an
implicitly generated encoding structure of the same name preceded by the character "#". Such encoding classes can be
imported into an EDM from that ASN.1 module.

NOTE — Where such names are the same as built-in encoding class names, then the external form of reference, as specified in
A.1, has to be used in the body of the importing module, and in any renames clause.

14.12 Each "EDMAssignment" defines a reference name, and may make use of other reference names. Each
reference name used in a module shall either be imported into that module or shall be defined precisely once within that
module.
NOTE - This is a stronger requirement than that imposed for ASN.1 modules. In ASN.1 modules, external references can be
used for types and values that have not been imported. In an EDM module (and in an ELM module) external references can only
be used for encoding classes that have been referenced in an imports clause. The purpose of external references is solely to
resolve ambiguities between imported names and built-in names, or between two identical names imported from different
modules.

14.13 There is no requirement that any reference name used in one assignment be defined (in another assignment
statement) textually before its use.

14.14 The productions in "EDMAssignment" are defined in subsequent clauses as follows:

EncodingClassAssignment Clause 16
EncodingObjectAssignment Clause 17
EncodingObjectSetAssignment Clause 18
ParameterizedAssignment Subclause C.1
NOTE - The '"ParameterizedAssignment" allows the parameterization of an "EncodingClassAssignment", an

"EncodingObjectAssignment", and an "EncodingObjectSetAssignment", as specified in C.1.

15 The renames clause

15.1 Explicitly generated and exported structures
15.1.1 The production "RenamesAndExports" is:

RenamesAndExports ::=
RENAMES
ExplicitGenerationList ";"

ExplicitGenerationList ::=
ExplicitGeneration
ExplicitGenerationList ?

ExplicitGeneration ::=
OptionalNameChanges
FROM GlobalModuleReference

OptionalNameChanges ::=
NameChanges | GENERATES

NOTE — An example of the use of the renames clause to produce explicitly generated encoding structures is
given in D.3.7.

15.1.2 The production "GlobalModuleReference" is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1, and shall
identify an ASN.1 module.

15.1.3 The "RenamesAndExports" is called a renames clause.

15.1.4 Each "ExplicitGeneration" generates, and exports from this module, an explicitly generated encoding structure
for each of the implicitly generated encoding structures of the ASN.1 module referenced by "GlobalModuleReference".
Each field of the explicitly generated encoding structure has associated with it the same abstract values as the
corresponding field of the implicitly generated encoding structure (which are those associated with the corresponding
field of the ASN.1 type from which it was generated).

15.1.5 If a renames clause references more than one ASN.1 module and as a result of this two explicitly generated
structures have the same simple name, then neither structure is available for explicit import into an ELM or an EDM
module.

NOTE — These explicitly generated structures nonetheless exist, and are likely to be implicitly referenced by other explicitly
generated structures that are exported without restriction.

32 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

15.1.6 The primary purpose of the renames clause is to make available the explicitly generated structures for import
into other modules, particularly the ELM. However, this clause also makes these structures available for reference
within the EDM module containing the renames clause except as specified in 15.1.7. If the simple name is ambiguous,
then a fully-qualified name shall be used within the EDM module containing the renames clause, as specified in 15.1.9.

NOTE — Ambiguity can arise either because of clashes with the names of built-in classes, or because of clashes of simple names
between structures generated from more than one ASN.1 module, or both.

15.1.7 When a renames clause produces an explicitly generated structure from an implicitly generated structure, that
implicitly generated structure cannot be imported into this EDM module using an imports clause, and the implicitly
generated structure is never available in this EDM module.

15.1.8 These explicitly generated encoding structures have the same simple reference name as the implicitly generated
encoding structure from which they were formed (but are distinct classes). Where a fully-qualified name is required for
an explicitly generated encoding structure, that fully-qualified name shall include the "Moduleldentifier" of the EDM
module containing the renames clause, as specified in 15.1.9.

NOTE — The implicitly generated encoding structures used in their generation have the same simple reference name, but their
fully-qualified name includes the "Moduleldentifier" of the ASN.1 module in which the corresponding type was defined.

15.1.9 If an EDM produces explicitly generated encoding structures from more than one ASN.1 module, it is possible
that some of these structures may have the same simple encoding class names. If any of these structures are referenced
in the body of this EDM, then the reference shall be an "ExternalEncodingClassReference" containing the
"modulereference" used as the ASN.1 module reference in the replaces clause of this EDM module.

15.1.10 The "ExternalEncodingClassReference" notation shall not be used in an imports clause except where required
by clause 15.1.9.

15.1.11 If a name which has been imported using an "ExternalEncodingClassRefererence" is used in the body of a
module, then the simple "encodingclassreference" can be used unless an "ExternalEncodingClassReference" is required
as specified in clause 15.1.9.

15.1.12 If the "OptionalNameChanges" is GENERATES, then all the explicitly generated encoding structures are the same

structure as the implicitly generated encoding structures used in their generation, except as specified in 15.1.14.
NOTE - (Tutorial) If, in an EDM module, there are multiple structures with the same simple reference name (whether these
names arise from an imports clause or from a renames clause, or from clashes with built-in classes, or from any combination of
these), then a fully-qualified name is used except for references to a built-in class. For implicitly generated structures, the
fully-qualified name always uses the ASN.1 module name. For structures generated by the renames clause in an EDM module,
the fully-qualified name is used. This fully-qualified name in the body of this EDM always uses the ASN.1 module name
referenced by the renames clause. For structures imported from another EDM module, the fully-qualified name uses the name of
that EDM module. This is always unambiguous, as importation is not permitted if an EDM module generates multiple explicitly
generated structures with the same simple reference name.

15.1.13 If "OptionalNameChanges" is "NameChanges", then 15.1.14 still applies, but the explicitly generated encoding
structures are further modified as specified in 15.2.

15.1.14 Consider an implicitly generated encoding structure (A say) which contains an encoding class reference to
some other implicitly generated encoding structure (B say). Then:

a) If this renames clause (in any of its "ExplicitGeneration"s) produces an explicitly generated encoding
structure corresponding to B (B1 say), then the corresponding reference in the explicitly generated
encoding structure corresponding to A is a reference to B1.

b) If there is no explicitly generated encoding structure corresponding to B, then the reference in the
generated encoding structure corresponding to A is a reference to B.

15.2 Name changes
15.2.1 The "NameChanges" production is:

NameChanges ::=
NameChange
NameChanges ?

NameChange ::=
OriginalClassName
AS
NewClassName
IN
NameChangeDomain

OriginalClassName ::= SimpleDefinedEncodingClass | BuiltinEncodingClassReference

ITU-T Rec. X.692 (03/2002) 33

ISO/IEC 8825-3:2003 (E)

NewClassName ::= encodingclassreference

15.2.2 Each "NameChanges" specifies that, in the generation of explicitly generated encoding structures, all
occurrences of "OriginalClassName" within "NameChangeDomain" in the implicitly generated encoding structures are
to be renamed as the class "NewClassName". "NameChangeDomain" is specified in 15.3, and identifies one or more
implicitly generated encoding structures (or components of those structures) from the ASN.1 module referenced by the
"GlobalModuleReference" in the "ExplicitGeneration".

NOTE 1 — This enables different encodings to be applied to some occurrences of a class from that applied to other occurrences.

NOTE 2 — This implies that "OriginalClassName" can only be a name implicitly generated from an ASN.1 type, that is, the name
of a user-defined ASN.1 type (preceded by "#"), or one of the class names listed in column 2 of Table 2.

15.2.3 References by "OriginalClassName" to fields of the implicitly generated encoding structure which correspond
to use of "ExternalTypeReference" in the ASN.1 type definition shall use the "SimpleDefinedEncodingClass" notation
with the same "modulereference" as the "ExternalTypeReference". Otherwise, if the "DefinedType" (preceded by a "#")
is not a "BuiltinEncodingClassReference", a simple "encodingclassreference" shall be used. If a "typereference"
(preceded by a "#") is a "BuiltinEncodingClassReference" then the "SimpleDefinedEncodingClass" notation shall be
used with the same "modulereference" as the ASN.1 module that generated the implicitly generated encoding structure.

15.2.4 When an ELM imports an explicitly generated encoding structure from an EDM, renames clauses in other
EDMs have no effect on the encoding of that structure.

NOTE - This means in practice that all the "coloring" (see 9.16.4) needed for any particular message has to be done in a single
EDM.

15.2.5 The "NewClassName" shall be defined in an encoding class assignment statement (see clause 16) of the form:

<Newd assNane>::=<Oi gi nal assNane>

where "<Newd assName>" and "<Ori gi nal O assNane>" are the names of the new and original classes appearing in
the "NameChanges" production. The assignment shall be in the EDM module with the renames clause.
NOTE — The "<Ori gi nal G assNane>" is required to reference a built-in encoding class or an externally generated encoding

structure produced by the renames clause in this module. In case of ambiguity, this will require the use of an external reference in
"<Cri gi nal d assName>".

15.3 Specifying the region for name changes
15.3.1 The production "NameChangeDomain" is:

NameChangeDomain ::=
IncludedRegions
Exception ?

Exception ::=
EXCEPT
ExcludedRegions

IncludedRegions ::=
ALL | RegionList

ExcludedRegions ::= RegionList

RegionList ::=
Region "," +

Region ::=
SimpleDefinedEncodingClass |
ComponentReference

ComponentReference ::=
SimpleDefinedEncodingClass

"nn
ComponentIdList

ComponentldList ::=
identifier "." +

15.3.2 Each "SimpleDefinedEncodingClass" shall be the name of an implicitly generated encoding structure from the
ASN.1 module referenced by the "GlobalModuleReference" in the "ExplicitGeneration". When used in "Region", it
identifies the whole of that encoding structure definition.

NOTE - The "ExternalEncodingClassReference" form of "SimpleDefinedEncodingClass" is used if the referenced class is
derived from a "typereference" name which (when preceded by "#") is a "BuiltinEncodingClassReference" (see 15.2.3).

34 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

15.3.3 Each "identifier" shall be the "identifier" in a "NamedField" of the implicitly generated encoding structure
identified by the "encodingclassreference” in the "ComponentReference". The "ComponentReference" identifies the
entire definition of the identified component of that encoding structure.

15.3.4 The first "identifier" of the "ComponentldList" shall be an "identifier" in a "NamedField" of the implicitly
generated encoding structure identified by the "encodingclassreference" in the "ComponentReference", and identifies the
entire definition of that component of the encoding structure. Each subsequent "identifier" of the "ComponentIdList"
shall be an "identifier" in a "NamedField" of the implicitly generated encoding structure identified by the previous part
of the "ComponentldList", and identifies the entire definition of that component.

15.3.5 The definitions identified by different "Region"s in "RegionList" shall be disjoint. A definition is identified by
"RegionList" if and only if it is identified by a "Region" in "RegionList".

15.3.6 If "IncludedRegions" is ALL, it identifies all parts of all the implicitly generated encoding structures from the
ASN.1 module referenced by the "GlobalModuleReference" in the "ExplicitGeneration".

15.3.7 The definitions identified by the "ExcludedRegions" shall be a proper subset of the definitions identified by the
"IncludedRegions".

15.3.8 The "NameChangeDomain" specification identifies the definitions in which the name changes are to be made.
The definitions in the "NameChangeDomain" are the definitions identified by the "IncludedRegions" which are not also
identified by "ExcludedRegions".

16 Encoding class assignments

16.1 General
16.1.1 The "EncodingClassAssignment" is:

EncodingClassAssignment ::=
encodingclassreference

Moot

EncodingClass

16.1.2 The "EncodingClassAssignment" assigns the "EncodingClass" to the "encodingclassreference".

NOTE - Any "EncodingObject" notation that was valid with "EncodingClass" as a governor is valid with
"encodingclassreference" as a governor.

16.1.3 An encoding class is in one of the following categories:
a) A category in the bit-field group of categories (see 16.1.7).
b) The alternatives category (see 16.1.8).
¢) The concatenation category (see 16.1.9).
d) The repetition category (see 16.1.10).
e) The optionality category (see 16.1.11).
f) The tag category (see 16.1.12).
g) A category in the encoding procedure group of categories (see 16.1.13).

NOTE — The term encoding constructor is used for any class in the alternatives, concatenation, and repetition categories. These
are also called the encoding constructor group of categories.

16.1.4 The category of each built-in encoding class is specified in 16.1.14.
NOTE - If an encoding class is a tagged class (see 16.2.1), or has bounds (see 16.2.6), then the category of the class is the
category of the class with the tag and the bounds removed.

16.1.5 The "EncodingClass" is:

EncodingClass ::=
BuiltinEncodingClassReference
| EncodingStructure

16.1.6 The "BuiltinEncodingClassReference" is:

BuiltinEncodingClassReference ::=
BitfieldClassReference

| AlternativesClassReference

| ConcatenationClassReference

ITU-T Rec. X.692 (03/2002) 35

ISO/IEC 8825-3:2003 (E)

RepetitionClassReference
OptionalityClassReference
TagClassReference
EncodingProcedureClassReference

16.1.7 The "BitfieldClassReference" is:

BitfieldClassReference ::=
#NUL
| #BOOL
| #INT
| #BITS
| #OCTETS
| #CHARS
| #PAD
| #BIT-STRING
| #BOOLEAN
| #CHARACTER-STRING
| #EMBEDDED-PDV
| #ENUMERATED
| #EXTERNAL
| #INTEGER
| #NULL
| #OBJECT-IDENTIFIER
| #OCTET-STRING
| #OPEN-TYPE
| #REAL
| #RELATIVE-OID
| #GeneralizedTime
| #UTCTime
| #ObjectDescriptor
| #BMPString
| #GeneralString
| #GraphicString
| #IASString
| #NumericString
| #PrintableString
| #TeletexString
| #UniversalString
| #UTF8String
| #VideotexString
| #VisibleString

The categories of the classes that these built-in names reference (see 16.1.14) are all defined to be in the bit-field group
of categories.

16.1.8 The "AlternativesClassReference" is:

AlternativesClassReference ::=
#ALTERNATIVES
| #CHOICE

16.1.9 The "ConcatenationClassReference" is:

ConcatenationClassReference ::=
#CONCATENATION
| #SEQUENCE
| #SET

16.1.10 The "RepetitionClassReference" is:

RepetitionClassReference ::=
#REPETITION
| #SEQUENCE-OF

| #SET-OF

16.1.11 The "OptionalityClassReference" is:

OptionalityClassReference ::=
#OPTIONAL

16.1.12 The "TagClassReference" is:

36 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

TagClassReference ::=
#TAG

16.1.13 The "EncodingProcedureClassReference" is:

EncodingProcedureClassReference ::=
#TRANSFORM
| #CONDITIONAL-INT
| #CONDITIONAL-REPETITION
| #OUTER

16.1.14 Some of these classes are defined to be primitive, and can only be encoded by encoding objects of their own
class. Others are derived from a primitive class through class assignment statements, and can be de-referenced to these
classes. Their category is that of the class from which they are derived. The following are the primitive classes that
each built-in class is derived from through class assignment statements. When defining encoding objects of derived
classes, any syntax permitted for the corresponding primitive class can be used for the derived class. The third column
of the table gives the category for each of the built-in classes that are not derived from other classes.

Built-in class Derived from Category
#ALTERNATIVES (primitive) alternatives
#BITS (primitive) bitstring
#BIT-STRING #BITS

#BOOL (primitive) boolean
#BOOLEAN #BOOL

#CHARACTER-STRING (defined using #SEQUENCE)

#CHARS (primitive) characterstring
#CHOICE #ALTERNATIVES

#CONCATENATION (primitive) concatenation
#CONDITIONAL-INT (primitive) encoding procedure
#CONDITIONAL-REPETITION (primitive) encoding procedure
#EMBEDDED-PDV (defined using #SEQUENCE)

#ENUMERATED #INT

#EXTERNAL (defined using #SEQUENCE)

#INT (primitive) integer
#INTEGER #INT

#NUL (primitive) null

#NULL #NUL

#OBJECT-IDENTIFIER (primitive) objectidentifier
#OCTETS (primitive) octetstring
#OCTET-STRING #OCTETS

#OPEN-TYPE (primitive) opentype
#OPTIONAL (primitive) optionality
#OUTER (primitive) encoding procedure
#PAD (primitive) pad

#REAL (primitive) real
#RELATIVE-OID #OBJECT-IDENTIFIER

#REPETITION (primitive) repetition
#SEQUENCE #CONCATENATION

#SEQUENCE-OF #REPETITION

#SET #CONCATENATION

#SET-OF #REPETITION

#TAG (primitive) tag
#TRANSFORM (primitive) encoding procedure
#GeneralizedTime #CHARS

#UTCTime #CHARS

#ObjectDescriptor #CHARS

#BMPString #CHARS

#GeneralString #CHARS

#GraphicString #CHARS

#IASString #CHARS

#NumericString #CHARS

#PrintableString #CHARS

#TeletexString #CHARS

#UniversalString #CHARS

#UTF8String #CHARS

#VideotexString #CHARS

#VisibleString #CHARS

ITU-T Rec. X.692 (03/2002) 37

ISO/IEC 8825-3:2003 (E)

16.2 Encoding structure definition
16.2.1 The "EncodingStructure" is:

EncodingStructure ::=
TaggedStructure
| UntaggedStructure

TaggedStructure ::=
” ["
TagClass
TagValue ?
'l] ”

UntaggedStructure

UntaggedStructure ::=
DefinedEncodingClass
| EncodingStructureField
| EncodingStructureDefn

TagClass ::=
DefinedEncodingClass |
TagClassReference

TagValue ::=
"(" number ")"

16.2.2 An "EncodingStructure" defines a structure-based encoding class using the notation specified below. This
notation permits the definition of arbitrary encoding classes using built-in encoding classes and defined encoding classes
(which may be generated encoding structures) for bit-fields, encoding constructors, and the encoding procedure classes
in the optionality category. All classes defined by "EncodingStructure" are in the encoding structure category.
(Examples of an encoding structure assignment illustrating many of the syntactic structures is given in D.2.8.4 and
D.2.2.3 is an example of the use of #TAG)

NOTE — The syntax prohibits the specification of a tag class immediately following another tag class in the definition of an
encoding structure, nor can such structures be produced by multiple textual tags in an ASN.1 type definition (see 11.3.4.1 ¢).

16.2.3 The "DefinedEncodingClass" is specified in 10.9.1 and shall be a class in the bit-field group of categories.
16.2.4 The "DefinedEncodingClass" in the "TagClass" shall be a class in the tag category (see 16.1.3).

16.2.5 The "number" in "TagValue" specifies a tag number which is associated with the class in the tag category.
16.2.6 The "EncodingStructureField" is:

EncodingStructureField ::=
#NUL
#BOOL
#INT Bounds?
#BITS Size?
#OCTETS Size?
#CHARS Size?
#PAD
#BIT-STRINGSize?
#BOOLEAN
#CHARACTER-STRING
#EMBEDDED-PDV

|
|
|
|
|
|
|
|
|
|
|
|
| #INTEGER Bounds?
|
|
|
|
|
|
|
|
|
|
|
|

#ENUMERATED Bounds?
#EXTERNAL

#NULL

#OBJECT-IDENTIFIER
#OCTET-STRING Size?
#OPEN-TYPE

#REAL

#RELATIVE-OID
#GeneralizedTime

#UTCTime

#ObjectDescriptor Size?
#BMPString Size?
#GeneralString Size?
#GraphicString Size?

38 ITU-T Rec. X.692 (03/2002)

#IASString
#NumericString
#PrintableString
#TeletexString
#UniversalString
#UTF8String
#VideotexString

|
|
|
|
|
|
|
| #VisibleString

ISO/IEC 8825-3:2003 (E)

Size?
Size?
Size?
Size?
Size?
Size?
Size?
Size?

16.2.7 The "EncodingStructureField"s represent all possible bitstring encodings for the corresponding ASN.1 types,
and can be assigned values of those types in a value mapping (see clause 19).

16.2.8 The ASN.I values which can be associated with each primitive field are as follows:

#NUL

#BOOL

#INT

#BITS
#OCTETS
#CHARS
#PAD
#OBJECT-IDENTIFIER
#OPEN-TYPE
#REAL

#TAG

The null value

The boolean values
The integer values
Bitstring values
Octetstring values
Character string values
None

Object identifier values
Open type values

Real values

Tag numbers

NOTE — The #PAD field cannot have associated ASN.1 values, and is never visible outside the encoding and decoding

procedures.

16.2.9 The "Bounds" and "Size" specify the bounds or effective size constraint respectively on the abstract values that

can be mapped to the field (see clause 19).

NOTE - Effective permitted alphabet constraints cannot be assigned in an encoding structure definition.

assigned through the value mappings of clause 19.

16.2.10 "Bounds" and "Size" are:

Bounds ::="(" EffectiveRange ")"

EffectiveRange ::=
MinMax
| Fixed

They can only be

Size ::="(" SIZE SizeEffectiveRange ")"

SizeEffectiveRange ::=
"(" EffectiveRange ")"

MinMax ::=
ValueOrMin

"nn

ValueOrMax

ValueOrMin ::=
SignedNumber |
MIN

ValueOrMax ::=
SignedNumber |
MAX

Fixed ::= SignedNumber

16.2.11 M N and MAX specify that there is no lower or upper bound respectively. M N shall not be used in "Size".
"Fixed" means a single value or a single size. "SignedNumber" is specified in ITU-T Rec. X.680 | ISO/IEC 8824-1,
18.1. It shall be non-negative when used in "Size". "ValueOrMin" and "ValueOrMax" specify lower and upper bounds

respectively.
16.2.12 The "EncodingStructureDefn" is:

EncodingStructureDefn ::=
AlternativesStructure

ITU-T Rec. X.692 (03/2002) 39

ISO/IEC 8825-3:2003 (E)

| RepetitionStructure
| ConcatenationStructure

16.2.13 These encoding structures are defined in the following clauses:

AlternativesStructure 16.3
RepetitionStructure 16.4
ConcatenationStructure 16.5

16.3 Alternative encoding structure
16.3.1 The "AlternativesStructure" is:

AlternativesStructure ::=
AlternativesClass

”" {"

NamedFields

”" } "
AlternativesClass ::=

DefinedEncodingClass |
AlternativesClassReference

NamedFields ::= NamedField "," +

NamedField ::=
identifier
EncodingStructure

16.3.2 The "AlternativesStructure" identifies the presence in an encoding of precisely one of the "EncodingStructure"s
in its "NamedFields". The "DefinedEncodingClass" shall be a class in the alternatives category (see 16.1.8). The
mechanisms used to identify which of the "EncodingStructure"s is present in an encoding are specified by an encoding
object of the "AlternativesClass".

16.3.3 The "AlternativesStructure” is an encoding constructor: when an encoding object set is applied to this structure
as specified in 13.2, the encoding of the "AlternativesClass" determines the selection of alternatives, and the application
point then proceeds to each of the "EncodingStructure"s in its "NamedFields".

16.4 Repetition encoding structure
16.4.1 The "RepetitionStructure" is:

RepetitionStructure ::=
RepetitionClass
” {"
identifier ?
EncodingStructure
'l}"

Size?

RepetitionClass ::=
DefinedEncodingClass |
RepetitionClassReference

16.4.2 The "RepetitionStructure” identifies the presence in an encoding of repeated occurrences of the
"EncodingStructure" in the production. The optional "Size" construction (see 16.2.9) specifies bounds on the number of
repetitions. The mechanisms used to identify how many repetitions of the "EncodingStructure" are present in an
encoding are specified by an encoding object of the "RepetitionClass" class. The "DefinedEncodingClass" shall be a
class in the repetition category (see 16.1.10).

16.4.3 The "RepetitionStructure” is an encoding constructor: when an encoding object is applied to this structure as
specified in clause 13.2, the encoding of the "RepetitionClass" determines the mechanisms for determining the number
of repetitions, and the application point then proceeds to the "EncodingStructure" in the production.

NOTE - The characters "{" and "} " are used in this construction, but are not present in the related ASN.1 SEQUENCE OF
construction. This was done to help avoid syntactic ambiguities in structure definition.

16.5 Concatenation encoding structure

16.5.1 The "ConcatenationStructure" is:

40 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

ConcatenationStructure ::=
ConcatenationClass
”" {"
ConcatComponents

'l}"

ConcatenationClass ::=
DefinedEncodingClass |
ConcatenationClassReference

ConcatComponents ::=
ConcatComponent "," *

ConcatComponent ::=
NamedField
ConcatComponentPresence ?

ConcatComponentPresence ::=
OPTIONAL-ENCODING
OptionalClass

OptionalClass ::=
DefinedEncodingClass |
OptionalityClassReference

16.5.2 The "ConcatenationStructure" identifies the presence in an encoding of zero or one encodings for each of the
"EncodingStructure"s in its "NamedField"s. The "DefinedEncodingClass" in the "ConcatenationClass" shall be a class
in the concatenation category (see 16.1.9), and the "DefinedEncodingClass" in the "OptionalClass" shall be a class in the
optionality category (see 16.1.3).

16.5.3 If "ConcatComponentPresence" is absent from a "Component", then the "EncodingStructure" in that named
field shall appear precisely once in the encoding.

16.5.4 If "ConcatComponentPresence" is present, the mechanism used to determine whether there is an encoding of
the corresponding "EncodingStructure" is specified by the encoding object which encodes the "OptionalClass".

16.5.5 The order in which the encodings of each "NamedField" appear in an encoding of the concatenation (and the
means of identifying which "NamedField" an encoding represents) is determined by an encoding object of the
"ConcatenationClass" class.

16.5.6 The "ConcatenationStructure" is an encoding constructor: when an encoding object is applied to this structure
as specified in clause 13.2, the encoding of the "ConcatenationClass" determines the concatenation procedures and the
application point then proceeds to each of the "EncodingStructure"s in its named fields.

17 Encoding object assignments

17.1 General
17.1.1 The "EncodingObjectAssignment" is:

EncodingObjectAssignment ::=
encodingobjectreference
DefinedOrBuiltinEncodingClass

Moozt

EncodingObject

17.1.2 The "EncodingObjectAssignment" defines the "encodingobjectreference" as an encoding object reference to the
"EncodingObject”, which is required to be a production which generates an object of the encoding class
"DefinedOrBuiltinEncodingClass". (D.1.2.2, D.1.7.3 and D.1.8.2 provide examples of encoding object assignment for
the different syntactic constructions for "EncodingObject" specified below.)

17.1.3 The "DefinedOrBuiltinEncodingClass" is called the governor of the "EncodingObject" notation in this
production.

NOTE 1 — Whenever the "EncodingObject" production appears in ECN, there is a governor, and the syntax of the governed
notation depends on the encoding class of the governor.

NOTE 2 — The syntax of the governed notation has been designed so that a parser can find the end of it without knowledge of the
governor.

ITU-T Rec. X.692 (03/2002) 41

ISO/IEC 8825-3:2003 (E)

17.1.4 There shall be no recursive definition (see 3.2.38) of an "encodingobjectreference”, and there shall be no
recursive instantiation (see 3.2.39) of an "encodingobjectreference".

17.1.5 The "EncodingObject" is:

EncodingObject ::=
DefinedEncodingObject

| DefinedSyntax

| EncodeWith

| EncodeByValueMapping

| EncodeStructure

| DifferentialEncodeDecodeObject

| EncodingOptionsEncodingObject

| NonECNEncodingObject

17.1.6 "DefinedEncodingObject" identifies an encoding object and is specified in 10.9.2. The
"DefinedEncodingObject" shall be of the same encoding class as the governor, or of a class which can be obtained from
the governor by de-referencing. The "encodingobjectreference” being defined exhibits an identification handle if and
only if the "DefinedEncodingObject" exhibits that identification handle.

17.1.7 In this Recommendation | International Standard, "the same encoding class" and "the same class" shall be
interpreted as meaning that the notation used for defining the two classes shall be the same encoding class reference
name, or shall be reference names that de-reference to the same encoding class name.

17.1.8 The remaining productions of "EncodingObject" are defined in the following clauses and provide alternative
means of defining encoding objects of the governor class:

DefinedSyntax 17.2 with clauses 20 to 25
EncodeWith 17.3
EncodeByValueMapping 17.4
EncodeStructure 17.5

DifferentialEncodeDecodeObject 17.6
EncodingOptionsEncodingObject 17.7
NonECNEncodingObject 17.8

17.2 Encoding with a defined syntax

17.2.1 The "DefinedSyntax" production is specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.5 and 11.6, as
modified by B.16 of this Recommendation | International Standard, and is used for the definition of encoding objects for
a governing encoding class. The detailed syntax for doing this is specified in clauses 23 to 25, and the semantics of the
constructs is specified in clause 22.

17.2.2 This notation for defining encoding objects is only available for the governing encoding classes in the
categories (or of the class) listed in Table 3 below. The syntax to be used for each encoding object is the
"DefinedSyntax" for the corresponding category or encoding class (specified in clauses 23 to 25).
NOTE 1 — The use of this syntax frequently requires the inclusion of a parameter for a determinant. Parameterized encoding
objects with such parameters (possibly included as part of a parameterized encoding object set) are only useful for application to
an encoding structure in an EDM, or for inclusion as encoding objects to be applied as part of a replacement action. They cannot
be applied in the ELM.
NOTE 2 — This notation enables users to specify encoding objects which encode #SET in the way PER normally encodes
#SEQUENCE, and vice versa. Users are expected to be responsible in their use of this notation.

Table 3 — Categories and classes supported by a defined syntax

null category

boolean category

integer category

bitstring category

octetstring category
characterstring category

pad category

alternatives category
repetition category
concatenation category
optionality category

#COONDI TI ONAL- | NT class
#CONDI TI ONAL- REPETI TI ONclass
tag category

42 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

#TRANSFORMCclass
#OUTER class

17.2.3 The information required (and the syntax to be used) to specify an encoding object of one of these categories or
classes using the "DefinedSyntax" is specified by the definitions in clauses 23 to 25.

17.2.4 If a governor for a value of one of the fields appearing in the "DefinedSyntax" is needed for use in a dummy
parameter list, then the notation "EncodingClassFieldType" (specified in B.17) shall be used. No other use shall be
made of the "EncodingClassFieldType" notation.

17.2.5 Where the syntax defined in clause 23 requires the provision of a REFERENCE, this can only be supplied in the
"DefinedSyntax" construction by using a dummy parameter of the encoding object that is being defined or, in the case of
flag-to-be-used or flag-to-be-set, by using a reference name that is textually present in the definition of a
replacement structure.

17.2.6 The "DefinedSyntax" notation specifies whether the "encodingobjectreference” being defined exhibits an
identification handle.

17.3 Encoding with encoding object sets
17.3.1 The "EncodeWith" is:

EncodeWith ::=
"{" ENCODE CombinedEncodings "}"

17.3.2 "CombinedEncodings" and its application to an encoding class is specified in clause 13.

17.3.3 The encoding object defined by the "EncodeWith" is the application of the "CombinedEncodings" to the
encoding class that is the governor (see 17.1.3) of the "EncodeWith" notation.

17.3.4 It is a specification error if this does not produce a complete encoding specification for the governor class.

17.3.5 If an encoding object set in the "CombinedEncodings" is parameterized with a parameter that is a REFERENCE,
the actual parameter supplied in this construction can only be a dummy parameter of the encoding object that is being
defined.

17.3.6 In the application of encodings specified in clause 13, there is an encoding object (A say) which produces the
first bit-field in the resulting encoding. The "encodingobjectreference" being defined exhibits an identification handle if
and only if the encoding object A exhibits that identification handle.

17.4 Encoding using value mappings

17.4.1 The "EncodeByValueMapping" is:

EncodeByValueMapping ::=
” {Vl
USE
DefinedOrBuiltinEncodingClass
MAPPING
ValueMapping
WITH
ValueMappingEncodingObjects

'l}"

ValueMappingEncodingObjects ::=
EncodingObject |
DefinedOrBuiltinEncodingObjectSet

17.4.2 The production "DefinedOrBuiltinEncodingClass" and its semantics are defined in 10.9.1. It shall be a
user-defined encoding structure or a built-in class in the bit-field group of categories (see 16.1.7).

17.4.3 The production "ValueMapping" is specified in 19.1.7, and shall be a mapping of values associated with the
governing encoding class to the class identified by the "DefinedOrBuiltinEncodingClass". The governing encoding
class shall be a class in the bit-field group of categories.

17.4.4 The "ValueMappingEncodingObjects" specifies the encoding of the "DefinedOrBuiltinEncodingClass". The
The "EncodingObject" shall define an encoding object using notation governed by that class, or by a class to which it
can be de-referenced (see 17.1.3). The "DefinedOrBuiltinEncodingObjectSet" can alternatively be used to specify the

ITU-T Rec. X.692 (03/2002) 43

ISO/IEC 8825-3:2003 (E)

encoding of the "DefinedOrBuiltinEncodingClass" and shall contain sufficient encoding objects to fully specify the
encoding of that class through the application of encodings specified in clause 13.

17.4.5 The syntax for "EncodingObject" allows both in-line definition of encoding objects (recursive application of
this clause) and the use of reference names. (D.2.9.3 gives an example of in-line definition to perform two value
mappings in a single assignment.)

17.4.6 Where the "EncodingObject" requires the provision of a REFERENCE, this can only be supplied in this
construction by using a dummy parameter of the encoding object that is being defined.

17.4.7 Where there are bounds or effective size constraints on fields of the "DefinedOrBuiltinEncodingClass", and the
specifications in clause 19 require values to be mapped to those fields that violate the specified bounds or effective size
constraints, then such values are not mapped, and the encoding of such values is not possible. It is an ECN or
application error if such values are submitted for encoding.

17.4.8 If the "EncodingObject" alternative of "ValueMappingEncodingObjects" is used, then the
"encodingobjectreference” being defined exhibits an identification handle if and only if the "EncodingObject" exhibits
that identification handle. If the "DefinedOrBuiltinEncodingObjectSet" alternative of "ValueMappingEncodingObjects"
is used to define the encoding of the "DefinedOrBuiltinEncodingClass", then determination of whether the
"encodingobjectreference" exhibits an identification handle is in accordance with 17.3.6.

17.5 Encoding an encoding structure
17.5.1 The "EncodeStructure" is:

EncodeStructure ::=
” {"
ENCODE STRUCTURE
nyn

{

ComponentEncodingList
StructureEncoding ?
"}"
CombinedEncodings ?
"}"

StructureEncoding ::=
STRUCTURED WITH

TagEncoding ?
EncodingOrUseSet

TagEncoding ::="[" EncodingOrUseSet "]"

EncodingOrUseSet ::=
EncodingObject |
USE-SET

17.5.2 The "EncodeStructure" can be used to define an encoding only if the governing encoding class de-references to
a construction defined using an encoding constructor in the alternatives, concatenation, or repetition categories, or to a
construction defined using one of these categories preceded by a class in the tag category. This encoding constructor is
called the governing encoding constructor.

17.5.3 "StructureEncoding", if this production is present, shall define an encoding for the governing encoding
constructor and for any preceding class in the tag category that precedes the governor encoding constructor. If the
production is absent, the "CombinedEncodings" shall be present, and shall contain encoding objects which can encode
the governing encoding constructor and any preceding class in the tag category, otherwise the ECN specification is in
error.

NOTE - "CombinedEncodings" has to be present if the "StructureEncoding" is absent, because a complete encoding has to be
produced. If it is desired to defer the specification of part of an encoding, then a dummy parameter should be used.

17.5.4 The encoding object applied to the governing encoding constructor (whether from STRUCTURED W TH or from
"CombinedEncodings") shall not specify any replacement actions.

17.5.5 If the "EncodingOrUseSet" in the "StructureEncoding" is an "EncodingObject", it shall be governed by the
governing encoding constructor.

17.5.6 If USE- SET is specified in any "EncodingOrUseSet", then the encoding of the corresponding class is obtained
by applying the "CombinedEncodings", which shall be present, and shall be sufficient to encode the corresponding class,
otherwise the ECN specification is in error.

44 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

17.5.7 The "ComponentEncodingList" is:

ComponentEncodingList ::=
ComponentEncoding "," *

ComponentEncoding ::=
NonOptionalComponentEncodingSpec |
OptionalComponentEncodingSpec

17.5.8 There shall be at most one "ComponentEncoding" for each component of the governing encoding constructor.
The "ComponentEncoding"s shall be in the same textual order.

NOTE — The absence of "ComponentEncoding"s can be detected by following named fields, or by the end of the
"ComponentEncodingList".

17.5.9 The "OptionalComponentEncodingSpec" shall be used if and only if the component is optional (i.e., contains
an encoding class in the optionality category).

17.5.10 If the "ComponentEncoding" for any component is not present in the "ComponentEncodingList", then the
"CombinedEncodings" shall be present (but see also 17.5.6), and is required, on application to the component (see 13.2),
to provide a complete encoding of that component (possibly including use of dummy parameters), otherwise it is an
error in the ECN specification.

NonOptionalComponentEncodingSpec ::=
identifier ?
TagAndElementEncoding

OptionalComponentEncodingSpec ::=
identifier
TagAndElementEncoding
OPTIONAL-ENCODING
OptionalEncoding

TagAndElementEncoding ::=
TagEncoding ?
EncodingOrUseSet

OptionalEncoding ::= EncodingOrUseSet

17.5.11 The "identifier" shall be the "identifier" of the component of the governing encoding constructor. The
"identifier" in "NonOptionalComponentEncodingSpec” shall be omitted if and only if the governing encoding
constructor is a class in the repetition category for which there is no identifier on the repeated element.

17.5.12 "TagAndElementEncoding" in the "ComponentEncoding" shall provide a complete encoding for the
component (including any class in the tag category that is prefixed to the element, but excluding any class in the
optionality category that follows the element).

17.5.13 The "EncodingObject"s in the "EncodingOrUseSet"s in the "TagAndElementEncoding" shall be governed by
the corresponding encoding classes in the component. If an "EncodingOrUseSet" is USE- SET then the encoding is
obtained by applying the "CombinedEncodings" (which shall be present).

17.5.14 The "EncodingOrUseSet" in the "OptionalEncoding" shall completely encode the class in the optionality
category of the component. If an "EncodingOrUseSet" is USE- SET then the encoding of the class in the optionality
category is obtained by applying the "CombinedEncodings" (which shall be present).

17.5.15 If a REFERENCE is needed as an actual parameter of any of the encoding objects or encoding object sets used in
this production, then it can either be supplied as a dummy parameter of the encoding object that is being defined, or it
can be supplied as any of the "identifier"s that are textually present in the construction obtained by de-referencing the
governor. If the governing encoding constructor is a class in the repetition category, the actual parameter for the
REFERENCE can be any identifier that is textually present in the definition of the "EncodingStructure" in the
"RepetitionStructure" of the repetition. If the REFERENCE is required to identify a container, it can also be supplied as:

a) STRUCTURE (provided the constructor for the structure being encoded is not an alternatives category)
when it refers to that structure;

b) OUTERwhen it refers to the container of the complete encoding.

NOTE — The "EncodeStructure" is the only production in which REFERENCEs can be supplied, except through the use of dummy
parameters or the use of QUTER, or where references are in support of f| ag-t o-be-used or fl ag-t o-be-set in the
definition of an encoding object for a class in the repetition category which uses replacement.

17.5.16 Determination of whether the "encodingobjectreference" being defined exhibits an identification handle is in
accordance with 17.3.6.

ITU-T Rec. X.692 (03/2002) 45

ISO/IEC 8825-3:2003 (E)

17.6 Differential encoding-decoding
17.6.1 The "DifferentialEncodeDecodeObject" is:

DifferentialEncodeDecodeObject ::=
nyn
{
ENCODE-DECODE
SpecForEncoding
DECODE AS IF
SpecForDecoders

H}"
SpecForEncoding ::= EncodingObject
SpecForDecoders ::= EncodingObject

17.6.2 The "DifferentialEncodingObject" specifies rules for encoding abstract values associated with the class of the
governor of this notation, and (separately) rules to be used by decoders for recovering abstract values from encodings
that are assumed to have been produced by encoding objects of the class of the governor.

17.6.3 The "SpecForEncoding" shall be applied by encoders. Decoders shall decode as if the encoder had applied the
"SpecForDecoders".
NOTE 1 — The "SpecForDecoders" is still an encoding specification. It tells decoders to assume that encoders have used this
specification.

NOTE 2 — The behaviour of decoders that decode on the assumption that an encoder has used the "SpecForDecoders", but detect
encoding errors, is not standardized.

17.6.4 The "SpecForEncoding" and the "SpecForDecoders" encoding objects shall not have been defined using
ENCCODE- DECCDE, nor shall any encoding objects used in their definition have been defined using ENCODE- DECCDE.

NOTE - This restriction is present because otherwise specification of the meaning of the encode/decode construction would
become more complex with no added functionality.

17.6.5 The "encodingobjectreference" being defined exhibits an identification handle if and only if the same
identification handle is being exhibited by the "SpecForEncoding" and by the "SpecForDecoders".

17.7 Encoding options
17.7.1 The "EncodingOptionsEncodingObject" is:

EncodingOptionsEncodingObject ::=
” {Vl
OPTIONS
EncodingOptionsList
WITH AlternativesEncodingObject

” } "
EncodingOptionsList ::= OrderedEncodingObjectList

AlternativesEncodingObject ::= EncodingObject

17.7.2 The "EncodingOptionsEncodingObject" specifies that the encoder may encode (subject to 17.7.5) using any of
the "EncodingObject"s in the "EncodingOptionsList". These "EncodingObject"s shall all be encoding objects of the
governing class.
NOTE — New implementations are strongly recommended to encode using the earliest "EncodingObject" in the ordered list that is
capable of encoding the abstract value to be encoded (see 17.7.5). The encoding options specification is provided only because it
is necessary to reflect options provided in legacy protocols and to support different forms of length encoding for strings. All the
encoding options can, of course, occur when decoding.

17.7.3 The "AlternativesEncodingObject" shall be an encoding object of any class in the alternatives category, and
encoders and decoders shall use the encodings and procedures specified by that encoding object as if the encoding
options were encodings for components of an instance of that class. The "AlternativesEncodingObject" shall not contain
a REPLACE specification (see 23.1.1). The DETERM NED BY parameter shall be set to handl e.

NOTE - [If the "AlternativesEncodingObject" is parameterized with a reference field parameter, then the

"encodingobjectreference” being defined has to be parameterized with a dummy reference field parameter that is used as the
actual parameter for the "AlternativesEncodingObject".

17.7.4 All "EncodingObject"s in the "EncodingOptionsList" shall exhibit that identification handle.

46 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

17.7.5 The encoder shall restrict its choice of "EncodingObject"s in the "EncodingOptionsList" to those that provide
encodings for the actual abstract value being encoded. It is an ECN specification or application error if there is not at
least one such "EncodingObject" for any abstract value that is to be encoded.

NOTE 1 — It is possible that the sets of abstract values encoded by the "EncodingObject"s in the "EncodingOptionsList" are
disjoint. This is not an error, and can be a convenient way of specifying different structures for encoding different ranges of
abstract values of the governing class, for example short form and long form encodings where the short form is mandatory for
small values.

NOTE 2 — It is possible to use an encoding options encoding object as the "SpecForDecoders" (see 17.6), where the
"SpecForEncoding" is an encoding options encoding object that contains exactly one of the options in the "SpecForDecoders".
This is another approach to extensibility.

17.8 Non-ECN definition of encoding objects
17.8.1 The "NonECNEncodingObject" is:

NonECNEncodingObject::=
NON-ECN-BEGIN
Assignedldentifier
anystringexceptnonecnend
NON-ECN-END

17.8.2 The "NonECNEncodingObject" shall specify an encoding object of the governor class (see 17.1.3). The
notation used to do this is contained in "anystringexceptnonecnend" and is not standardized.

17.8.3 The production "Assignedldentifier" and its semantics is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1,
as modified by A.l1 of this Recommendation | International Standard. It identifies the notation used in the
"anystringexceptuserdefinedend" to specify the encoding.

17.8.4 If the "empty" alternative of "Assignedldentifier" is used, then the notation is determined by means outside of
this Recommendation | International Standard.

17.8.5 The assignment of object identifiers to any notation for use in "anystringexceptnonecnend" follows the normal
rules for the assignment of object identifiers as specified in the ITU-T Rec. X.660 | ISO/IEC 9834 series.

17.8.6 An identification handle is exhibited by the "encodingobjectreference" being defined if and only if the
"anystringexceptnonecnend" specifies that it does so. The means of such specification is not defined in this
Recommendation | International Standard.

18 Encoding object set assignments

18.1 General
18.1.1 The "EncodingObjectSetAssignment" is:

EncodingObjectSetAssignment ::=
encodingobjectsetreference
#ENCODINGS

Moot

EncodingObjectSet
CompletionClause ?

EncodingObjectSet ::=
DefinedOrBuiltinEncodingObjectSet |
EncodingObjectSetSpec

18.1.2 The "EncodingObjectSet" notation is governed by the reserved word #ENCODI NGS, and shall satisfy the
conditions given below.

18.1.3 There shall be no recursive definition (see 3.2.38) of an "encodingclassreference", and there shall be no
recursive instantiation (see 3.2.39) of an "encodingclassreference".

18.1.4 "DefinedOrBuiltinEncodingObjectSet" is defined in 10.9.3.
18.1.5 The "EncodingObjectSetSpec" is:

EncodingObjectSetSpec ::=
” {"

ITU-T Rec. X.692 (03/2002) 47

ISO/IEC 8825-3:2003 (E)

EncodingObjects UnionMark *
” } "

EncodingObjects ::=
DefinedEncodingObject |
DefinedEncodingObjectSet

UnionMark ::=
Vll" |

UNION

18.1.6 "EncodingObjectSetSpec" defines an encoding object set using one or more encoding objects or encoding
object sets.

18.1.7 Encoding objects forming an encoding object set shall all be of distinct encoding classes, and shall not be
classes in the encoding procedure group of categories unless they are of the #OUTER class (see 16.1.13).

NOTE — An encoding object set is used for defining other encoding object sets, for defining encoding objects in the EDM, and for
import into the ELM for the application of encodings.

18.1.8 If "CompletionClause" is present, then the encoding object set defined by "EncodingObjectSetSpec" is
considered to be "PrimaryEncodings" (see 13.2), and the encoding object set assigned to the
"encodingobjectsetreference” is the combined encoding object set formed as specified in 13.2.

18.2 Built-in encoding object sets
18.2.1 The "BuiltinEncodingObjectSetReference" is:

BuiltinEncodingObjectSetReference ::=
PER-BASIC-ALIGNED

| PER-BASIC-UNALIGNED

| PER-CANONICAL-ALIGNED

| PER-CANONICAL-UNALIGNED

| BER

| CER

| DER

18.2.2 These encoding object set names reference the sets of encoding objects defined by ITU-T Rec. X.690 |
ISO/IEC 8825-1 and ITU-T Rec. X.691 | ISO/IEC 8825-2. The object identifiers for the encoding rules providing these
encoding object sets are given in Table 4.

NOTE - These Recommendations | International Standards were written before this ECN Recommendation | International

Standard, and do not use the encoding object terminology. They define, for example, the way an ASN.1 | NTEGER or BOOLEAN
type is to be encoded. This should be interpreted as the definition of an encoding object of class #1 NTECGER or class #BOOLEAN.

Table 4 — Built-in encoding object set names and associated object identifiers

PER-BASIC-ALIGNED {joint-iso-itu-t(2) asn1(1) packed-encoding(3) basic(0) aligned(0)}
PER-BASIC-UNALIGNED {joint-iso-itu-t(2) asn1(1) packed-encoding(3) basic(0) unaligned(1)}
PER-CANONICAL-ALIGNED {joint-iso-itu-t(2) asn1(1) packed-encoding(3) canonical(1) aligned(0)}
PER-CANONICAL-UNALIGNED {joint-iso-itu-t(2) packed-encoding(3) canonical(1) unaligned(1)}

BER {joint-iso-itu-t(2) asn1(1) basic-encoding(1)}
CER {joint-iso-itu-t(2) asn1(1) ber-derived(2) canonical-encoding(0)}
DER {joint-iso-itu-t(2) asn1(1) ber-derived(2) distinguished-encoding(1)}

18.2.3 These encoding object sets are each a complete set of encoding objects which can be applied to any encoding
structure (either implicitly generated from an ASN.1 type or defined by the user), with appropriate de-referencing, to
specify the corresponding BER or PER encodings.

NOTE - An enconding object for a user-defined or implicitly-generated encoding class can be added to such a set, and will take
precedence over any encoding which could be obtained by de-referencing.

18.2.4 The above sets all contain encoding objects for the classes used in implicitly generated encoding structures (see
11.2) which are different for each set of encoding rules. They also each contain identical encoding objects for the
classes #| NT, #BOCL, #NUL, #CHARS, #OCTETS, #Bl TS, #CONCATENATI ON. They do not contain encoding objects for
#ALTERNATI VES, #REPETI Tl ON, and #PAD.

18.2.5 These encoding classes represent basic building blocks of encodings, and are encoded simply by all the above
built-in encoding object sets. The encoding objects for these classes specify encodings as follows:

48 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

18.2.5.1 #INT is encoded as a PER- BASI C- UNALI GNED #| NTEGER encoding, provided it is bounded. It is an ECN
design error if the #I NT does not have both a lower and an upper bound when this encoding object is applied to the
#1 NT.

18.2.5.2 #BOOL and #NUL are encoded as PER- BASI C- UNALI GNED #BOCOLEAN and #NULL respectively.

18.2.5.3 #CHARS, #OCTETS, and #BI TS are encoded as PER- BASI C- UNALI GNED UTF8St ri ng, #OCTET- STRI NG and
#BI T- STRI NG respectively, provided they are a single size. It is an ECN design error if #CHARS, #OCTETS, or #BI TS
do not have an effective size constraint restricting them to a single size.

18.2.5.4 #CONCATENATI ON is encoded as a PER- BASI C- UNALI GNED encoding of a #SEQUENCE with no optional
components. If these encoding objects are applied to a #CONCATENATI ON with optional components, then it is an ECN
specification error.

18.2.6 The #OPEN TYPE encoding objects in the BER, CER, and DER built-in encoding object sets produce no
additional encoding for the #OPEN- TYPE class. When these encoding objects are applied to a class in the opentype
category, it is an ECN specification error if the encodings of the values of the type chosen (in an instance of
communication) for use with the #0PEN- TYPE class are not self-delimiting.

NOTE — The combined encoding object set applied to the type chosen for use with the #OPEN- TYPE class is always the same as
the combined encoding object set applied to the #OPEN- TYPE class (see 13.2.10.5).

19 Mapping values

19.1 General

19.1.1 This clause specifies the syntax for mapping values (and tag numbers) to be encoded by the fields of one
encoding structure (which may be a generated encoding structure or any other encoding structure) to the fields of
another encoding structure.

NOTE — The power provided in a single use of this notation has been limited (to avoid complexity). More complex mappings can

be achieved by using multiple instances of "EncodeByValueMapping" (see 17.4 and the example in D.1.10.2). These mapping
mechanisms can be extended and generalized, but this will not be done unless further user requirements are identified.

19.1.2 In specifying the "EncodeByValueMapping" notation (see 17.4.1) the structure to which the
"DefinedOrBuiltinEncodingClass" in the "EncodingObjectAssignment” (see 17.1.1), of which it is a part, de-references
is called the source governor or the source encoding class (depending on context). The structure to which the
"DefinedOrBuiltinEncodingClass" in the "EncodeByValueMapping" itself de-references is called the target governor or
the target encoding class (depending on context).

19.1.3 If the source governor has an initial class in the tag category, then the target governor shall have an initial class
in the tag category and the tag number of the class in the source governor is mapped to the tag number of the class in the
tag category in the target governor. If the class in the tag category in the target governor has an associated tag number,
then it is an ECN specification error if this differs from the tag number being mapped from the source governor.

19.1.4 If the source governor does not have an initial class in the tag category, then the target governor is not required
to have an initial class in the tag category, but if it does, then there shall be a tag number associated with that tag in the
definition of the target governor.

19.1.5 The effect of the presence of an initial class in the tag category in the source or target governors is completely
determined by 19.1.3 and 19.1.4, and the following text ignores the possible presence of such classes.

19.1.6 The encodings specified for values mapped to the target encoding class become the encodings of those values
in the source encoding class.

NOTE 1 — If the total ECN specification maps only some of the values from an ASN.1 type into encodings, that is not an error. It
is a constraint imposed by ECN on the values that can be used by the application. Such constraints should normally be identified
by comment in either the ASN.1 specification or in the ECN specification (see 17.4.7).

NOTE 2 — If the total ECN specification maps two values into the same encoding produced by a single encoding object, then that
is an ECN specification error. Such errors can be detected by ECN tools, but rules for their avoidance are not complete in this
Recommendation | International Standard, and responsibility rests with the ECN user.

19.1.7 The "ValueMapping" is:

ValueMapping ::=
MappingByExplicitValues
| MappingByMatchingFields
| MappingByTransformEncodingObjects
| MappingByAbstractValueOrdering

ITU-T Rec. X.692 (03/2002) 49

ISO/IEC 8825-3:2003 (E)

| MappingByValueDistribution

| MappingIntToBits
NOTE — All occurrences of this syntax are preceded by the reserved word MAPPI NG (D.1.2.2, D.1.4.2, D.1.10.2, and D.2.1.3
and Annex E give examples of the definition of encodings using each of these value mappings.)

19.1.8 The "ValueMapping" productions are specified as follows:

MappingByExplicitValues 19.2
MappingByMatchingFields 19.3
MappingByTransformEncodingObjects 19.4
MappingByAbstractValueOrdering 19.5
MappingByValueDistribution 19.6
MappingIntToBits 19.7

NOTE - It is frequently the case that several of the value mappings can be used to define the same encoding, but some will
produce a more obvious or less verbose specification than others. ECN designers should select carefully the form of value
mapping to be used.

19.2 Mapping by explicit values

19.2.1 This clause provides notation for specifying the mapping of values between different primitive bit-field
encoding classes. (D.1.10.2 gives an example.)

19.2.2 This clause uses the notation for ASN.1 values (ASN.1 value notation) specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1 for the type which corresponds to an encoding class.

19.2.3 Table 5 specifies the ASN.1 value notation to be used with each governing encoding class. In each case the
class may or may not have an associated size or value range constraint.

19.2.4 ECN supports mapping by explicit values (either to or from the encoding class) for all encoding classes in the
categories listed in column 1 of Table 5. Column 2 of the table specifies the value notation (as either an ASN.1
production or by reference to a clause of ITU-T Rec. X.680 | ISO/IEC 8824-1 or both) that shall be used when an
encoding class in the category listed in column 1 is specified as the governor of the notation. It also specifies the clause
in ITU-T Rec. X.680 | ISO/IEC 8824-1 that defines the value notation.

NOTE - None of the following ASN.1 value notations can use "DefinedValue"s (as defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, 13.1) because "valuereference"s cannot be imported nor defined in an EDM or ELM module.

Table 5 — Categories of encoding classes and value notation used in mapping by explicit values

Category of governing encoding class ASN.1 value notation

bitstring "bstring" or "hstring"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.10 and 11.12)
boolean "BooleanValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 17.3)
characterstring "RestrictedCharacterStringValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 37.8)
integer "SignedNumber"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.1)
null "NullValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 23.3)
objectidentifier "Definitiveldentifier" (see A.1)
octetstring "bstring" or "hstring"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.10 and 11.12)
real "RealValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 20.6)
19.2.5 The "MappingByExplicitValues" is:

MappingByExplicitValues ::=
VALUES
” {"
MappedValues "," +
H}"

MappedValues ::=
MappedValuel
TO

50 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

MappedValue2
MappedValuel ::= Value
MappedValue2 ::= Value

19.2.6 The "MappedValuel" shall be value notation governed by the source governor and "MappedValue2" shall be
value notation governed by the target governor (see 19.1.2). The value in the source specified by "MappedValuel" is
mapped to the value in the target specified by "MappedValue2".

19.2.7 It is an ECN specification error if "MappedValue2" is a value which violates a bound or size constraint in the
target.

19.3 Mapping by matching fields

19.3.1 This mapping is provided primarily to enable the encoding of an ASN.1 type to be defined as the encoding of
an encoding structure that has fields corresponding to the components of the type, but also has added fields for
determinants.

19.3.2 The "MappingByMatchingFields" is:

MappingByMatchingFields ::=
FIELDS

19.3.3 If either the source or the target encoding classes are user-defined encoding structures (see 9.2.2.3) or generated
encoding structures, then these references are resolved until the source and target start with an encoding constructor. If
this encoding constructor in the target is in the repetitions category, then de-referencing of the component of this
repetition encoding constructor is performed until the component starts with an encoding constructor. References within
the resulting structures are not resolved.

19.3.4 The effect of the possible presence of classes in the tag category on the initial de-referencing of
"DefinedOrBuiltinEncodingClass" names in the source and target was fully specified in 19.1.3 to 19.1.5. It is an ECN
specification error if further initial classes in the tag category are introduced by the application of 19.3.3.

19.3.5 After the application of 19.3.3, the source and the target encoding classes shall start with the same encoding
constructor. This shall be either an encoding constructor in the concatenation category, or an encoding constructor in
the repetitions category. If this encoding constructor is in the repetitions category, then its component in the target shall
be a class in the concatenation category. For the purposes of this subclause 19.3, the resulting encoding structures are
called the source and target encoding structures respectively.

19.3.6 The fieldnames of the (top-level) components of the encoding constructor produced by the application of 19.3.3
to the source are called the source fields.

NOTE — Source fields are restricted to the top-level fields of a concatenation or the component of a repetition. This restriction is
imposed to ease implementation of ECN, and could be relaxed in the future.

19.3.7 The fieldnames of the components of the encoding constructor in the concatenation categories produced by the
application of 19.3.3 to the target are called the potential target fields.

NOTE — The potential target fields may be either the components of a top-level concatenation, or the components of a
concatenation that is the component of a repetition.

19.3.8 For every source field, there shall be a potential target field with the same fieldname (the matching target field).

NOTE — A component of a repetition class can only be mapped if it contains an identifier (matching one in the target). Use of
mapping by matching fields would not be legal if the identifier was absent.

19.3.9 A matching target field shall be an optional element in a concatenation if and only if its source field is an
optional element in a concatenation, and the presence or absence of the source field in an abstract value associated with
the source encoding structure determines the presence or absence of the target field in the target encoding structure.

19.3.10 If the source field has an initial class in the tag category, then the matching target field shall have an initial class
in the tag category and the tag number of the class in the source field is mapped to the tag number of the class in the tag
category in the matching target field. If the class in the tag category in the matching target field has an associated tag
number, then it is an ECN specification error if this differs from the tag number being mapped from the source field.

19.3.11 If the source field does not have an initial class in the tag category, then the matching target field is not required
to have an initial class in the tag category, but if it does, then there shall be a tag number associated with that tag in the
definition of the matching target field.

ITU-T Rec. X.692 (03/2002) 51

ISO/IEC 8825-3:2003 (E)

19.3.12 Apart from the presence or absence of classes in the tag category and optionality categories (as specified in
19.3.9 to 19.3.11), the matching target field and the source field shall have the same encoding class (see 17.1.7) or shall
be defined using the same sequence of lexical items, ignoring comment and whitespace and bounds specifications.

19.3.13 All abstract values are mapped from each of the source fields to the matching target fields. Additional fields in
the target encoding structure do not acquire abstract values. In a correct ECN specification, the value of such fields has
to be specified by reference as a determinant.

19.3.14 If the source and target encoding constructors are classes in the repetition category, then the number of
repetitions in the abstract value associated with the source encoding structure is mapped to the number of repetitions in
the target encoding structure.

19.3.15 If a source field has an associated contents constraint, this is mapped as an associated contents constraint to the
matching target field.

19.3.16 If, due to the presence of bounds or size constraints, there are values in the source field that are not present in
the matching target field, then 17.4.7 shall apply.

19.4 Mapping by #TRANSFORMencoding objects
19.4.1 This mapping permits one or more #TRANSFORMencoding objects to be applied to produce the mapping.

19.4.2 The #TRANSFORMencoding class is defined in clause 24. It enables encoding objects to be specified which will

transform source abstract values into result abstract values. The rules for forming an ordered list of transforms (for

"OrderedTransformList") are specified in clause 24. The complete list is defined to transform from a source to a result.
NOTE - Examples of mappings defined with these transforms are given in D.1.2.2 and D.2.4.2. The example in D.1.6.3 shows
the use of this production to define BCD encodings of an ASN.1 integer.

19.4.3 The "MappingByTransformEncodingObjects" is:

MappingByTransformEncodingObjects ::=
TRANSFORMS
” {"
OrderedTransformList

H}"
OrderedTransformList ::= Transform "," +

Transform ::= EncodingObject

19.4.4 All the "EncodingObject"s in the "OrderedTransformList" shall be governed by the encoding class
#TRANSFORM

19.4.5 The target and source classes for this mapping (see 19.1.2) shall be of the bitstring, boolean, characterstring,
integer, or octetstring category. The source of the first transform in the list and the result of the last transform in the list
shall agree with the category of the source and target categories as specified in 24.2.7.

19.4.6 It is an ECN specification or application error if any "Transform" in the "OrderedTransformList" is not
reversible for the abstract value being mapped.
NOTE - Clause 24 specifies, for each transform, the abstract values for which it is defined to be reversible.

19.4.7 If there are bounds or effective size constraints on the target encoding class, then 17.4.7 shall apply.

19.5 Mapping by abstract value ordering

19.5.1 This mapping enables abstract values associated with simple encoding classes to be distributed into the fields of
complex encoding structures, and abstract values associated with complex encoding structures to be mapped to simple
encoding classes such as #| NT. It also allows the compaction of integer values or enumerations into a contiguous set of
integer values (see D.1.4).

NOTE — The tag numbers associated with classes in the tag category are not abstract values.

19.5.2 The "MappingByAbstractValueOrdering" is:

MappingByAbstractValueOrdering ::=
ORDERED VALUES

52 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

19.5.3 For this mapping, all encoding class names are de-referenced (recursively), and the result shall be a class in the
null, boolean, integer or real category, or shall be a construction defined using a class in the alternatives category, or
shall be a class in the concatenation category which has a single non-optional component.

19.5.4 The ordered set of values may be finite or infinite.

19.5.4.1 A finite set of ordered abstract values is defined for encoding classes in the following categories:
a) null;
b) boolean;
¢) bounded integer;
d) real constrained to a finite number of values;

e) an encoding structure defined using the alternatives category, provided that all of the alternatives have
a finite ordering defined;

f) an encoding structure defined using the concatenation category that has a single non-optional
component, provided that the component has a finite ordering defined.

19.5.4.2 An infinite set of ordered abstract values is defined for encoding classes in the following categories:
a) integer, constrained to have a finite lower bound;

b) an encoding structure defined using the alternatives category, provided that all of the alternatives except
the last are defined to have a finite set of ordered values, and the last alternative is defined to have an
infinite set of ordered values;

¢) an encoding structure defined using the concatenation category that has a single non-optional component,
provided that the component is defined to have an infinite set of ordered abstract values.

19.5.5 Classes in the null category have a single abstract value. Classes in the boolean category are defined to have
TRUE before FALSE. Classes in the integer category are defined to have higher integer values following lower integer
values. Classes in the real category are defined to have higher values following lower values.

NOTE — The number of abstract values associated with a class in the integer category is not necessarily finite.

19.5.6 Any bounds present in the source or destination shall be taken fully into account in determining the ordered set
of abstract values.

19.5.7 The ordering of the abstract values associated with a class in the alternatives category (all of whose alternatives
have a defined ordering of abstract values) is defined to be the (ordered) abstract values from the textually first
alternative, followed by those from the textually second alternative, and so on to the textually last alternative.

19.5.8 The ordering of the abstract values associated with a class in the concatenation category that has a single
non-optional component shall be the order determined by the ordering of the abstract values of its single component.

19.5.9 The mapping is defined from the abstract values in the first encoding class to the abstract values in the second
encoding class by their position in the above ordering.

19.5.10 Note that the above rules ensure that there is a defined first value in each ordering, and a defined next value.
There need not be a defined last value (either or both sets may be infinite).

19.5.11 If the number of abstract values in the destination ordering is less than the number of abstract values in the
source ordering, this is not an error. However, the ECN specification will be unable to encode some of the abstract
values of the ASN.1 specification and this should be identified by comment in either the ASN.1 specification or the
ECN specification.

19.5.12 If the number of abstract values in the destination ordering exceeds those in the source ordering, then there may
be some ECN-defined encodings that have no ASN.1 abstract value, and will never be generated.

19.5.13 This mapping can also be applied in all cases where the only abstract values in the target structure are those
associated with a single instance of the same class as the source structure.

NOTE — This case would occur if the target structure was the same as the source structure preceded by one or more instances of
classes in the tag category.

19.5.14 Classes in the tag category may be present in the target structure, but are required to have an associated tag
number specified in the structure definition. Their presence has no affect on the mapping of abstract values.

ITU-T Rec. X.692 (03/2002) 53

ISO/IEC 8825-3:2003 (E)

19.6 Mapping by value distribution

19.6.1 This mapping takes ranges of values from an encoding class in the integer category, mapping each range to a
different integer field in a more complex encoding structure. Fields which receive no abstract values shall have their
values determined by the application of determinants.

19.6.2 All encoding structure names are de-referenced (recursively) before the application of this mapping.

19.6.3 The source encoding class shall then be a class in the integer category, possibly with a preceding class in the tag
category which is mapped according to 19.1.3 to 19.1.5.

19.6.4 The target encoding class may be any encoding structure, and may contain classes in the tag category, but all
fieldnames in the entire encoding structure shall be distinct, and all classes in the tag category in the target (except those
mapped by 19.6.3) shall have a tag number in their definition and are otherwise ignored in the mapping.

19.6.5 Values shall be mapped only to fields in the target structure that are classes in the integer category, possibly
preceded by classes in the tag category (see 19.6.4), and possibly with bounds.

19.6.6 The "MappingByValueDistribution" is:

MappingByValueDistribution ::=
DISTRIBUTION
” {"
Distribution "," +

"}"

Distribution ::=
SelectedValues
TO
identifier

SelectedValues ::=
SelectedValue

| DistributionRange
| REMAINDER

DistributionRange ::=
DistributionRangeValuel

"non

DistributionRangeValue2
SelectedValue ::= SignedNumber

DistributionRangeValuel ::= SignedNumber
DistributionRangeValue2 ::= SignedNumber

19.6.7 "SignedNumber" is specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.1.
19.6.8 '"DistributionRangeValuel" shall be less than "DistributionRangeValue2".

19.6.9 The value specified by "SelectedValue" in "SelectedValues", or the set of values greater than or equal to
"DistributionRangeValuel" and less than or equal to "DistributionRangeValue2", are mapped to the field specified by
"identifier".

19.6.10 The reserved word REMAI NDER shall only be used once for the last "SelectedValues", and specifies all abstract
values in the source encoding class that have not been distributed by earlier "SelectedValues".

19.6.11 A value shall not be mapped to more than one target field, but several "SelectedValues" may have the same
destination.

19.6.12 If there are bounds on the target field, then 17.4.7 shall apply.

19.6.13 If a value from the source is mapped into a field in the target whose presence depends on optionality or choice
of alternatives or both, this is not an error, but the optionality and choice of alternatives in the target (when encoding
such values) shall be such that the encoding of the target includes the target field.

54 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

19.7 Mapping integer values to bits

19.7.1 This mapping takes single values or ranges of values from an encoding class in the integer category (possibly
preceded by classes in the tag category as specified in 19.1.3 to 19.1.5), mapping each integer value to a bitstring value
(possibly preceded by classes in the tag category).

NOTE — This mapping is intended to support self-delimiting encodings of integers, such as Huffman encodings. (See Annex E
for further discussion and examples of Huffman encodings.)

19.7.2 The source encoding class shall be a class in the integer category, possibly preceded by classes in the tag
category.

19.7.3 The destination encoding class shall be a class in the bitstring category, possibly preceded by classes in the tag
category.

19.7.4 Classes in the tag category are mapped as specified in 19.1.3 to 19.1.5.
19.7.5 The "MappingIntToBits" is:

MappingIntToBits ::=
TO BITS
” {Vl
MappedIntToBits "," +
mnmn
}V

MappedIntToBits ::=
SingleIntValMap |
IntValRangeMap

19.7.6 Each "SingleIntValMap" maps a single integer value to a single bitstring value.

19.7.7 Each "IntValRangeMap" maps a range of contiguous and increasing integer values to a range of contiguous and
increasing bitstring values.

19.7.8 Bitstring values are defined to be contiguous if:
a) They are all the same length in bits.

b) When interpreted as a positive integer value, the corresponding integer values are contiguous and
increasing integer values.

19.7.9 Only values specified in the mapping are encodable. Other abstract values of the source are not mapped and
cannot be encoded by the encoding object defined by the encoding object assignment using this construct. It is an ECN
or application error if such values are presented to an encoder.

NOTE - This limitation of the encoding should be reflected by constraints on the ASN.1 type to which it is applied, or by
comment in the ASN.1 specification.

19.7.10 The "SingleIntValMap" is:

SingleIntValMap ::=
IntValue
TO
BitValue

IntValue ::= SignedNumber
BitValue ::=

bstring |

hstring

19.7.11 The "SignedNumber", "bstring", and "hstring" are specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.1,
11.10 and 11.12, respectively.

19.7.12 The "SingleIntValMap" maps the specified integer value to the specified bitstring value.
19.7.13 The "IntValRangeMap" is:

IntValRangeMap ::=
IntRange
TO
BitRange

IntRange ::=
IntRangeValuel

ITU-T Rec. X.692 (03/2002) 55

ISO/IEC 8825-3:2003 (E)

"nn

IntRangeValue2

BitRange ::=
BitRangeValuel

"nn

BitRangeValue2
IntRangeValuel ::= SignedNumber
IntRangeValue2 ::= SignedNumber

BitRangeValuel ::=
bstring |
hstring

BitRangeValue2 ::=
bstring |
hstring

19.7.14 The bitstrings "BitRangeValuel" and "BitRangeValue2" shall be the same number of bits.
19.7.15 The value "IntRangeValue2" shall be greater than the value "IntRangeValuel".

19.7.16 When interpreted as a positive integer encoding (see ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.3),
"BitRangeValue2" shall represent an integer value ("B", say) greater than that represented by "BitRangeValuel" ("A",
say), and the difference between the integer values corresponding to "BitRangeValue2" and "BitRangeValuel" ("B" -
"A") shall equal the difference between the values of "IntRangeValue2" and "IntRangeValuel".

19.7.17 The "BitRange" represents the ordered set of bitstrings corresponding to the integer values between "A" and
HB".

19.7.18 The "IntValRangeMap" maps each of the integers in the specified range to the corresponding bitstring value in
the "BitRange". (Annex E gives examples of an "IntValRangeMap".)

19.7.19 It is an ECN specification error if any "BitRange" includes a value which violates a size constraint on the target.

20 Defining encoding objects using defined syntax

20.1 Clauses 21 to 25 specify the information needed to define encoding objects for each encoding class category,
and the syntax to be used. This syntax is called the defined syntax, and is specified using the information object class
notation of ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by Annex B of this Recommendation | International
Standard.

20.2 The defined syntax for each category can also be used to define encoding objects for structures which are
classes of that category, preceded by one or more instances of a class in the tag category. Where the following text
requires that a class be in a specified category, this includes the case where the class is preceded by a class in the tag
category.

20.3 The use of the modified information object class notation is solely for use within this Recommendation |
International Standard

20.4 The use of the defined syntax notation to define encoding objects is specified in 17.2. The defined syntax for
defining encoding objects shall be the syntax specified by the W TH SYNTAX statements in clauses 23 to 25.

20.5 The W TH SYNTAX statements impose constraints on the values of some encoding properties, in conjunction
with the values of other encoding properties, to enforce some (but not all) semantic constraints. Other constraints on the
use of the W TH SYNTAX statements are specified in text.

20.6 The defined syntax for each encoding class specifies a number of encoding properties which can be supplied
with values of the ASN.1 types defined in clause 21 (or in some cases with other encoding classes and encoding objects)
in order to provide the information needed to specify an encoding object of that class. The information needed to define
an encoding object is in general a combination of encoding property values, together with the particular instance of
defined syntax used to specify those values

NOTE — This differs from the use of a W TH SYNTAX statement in normal information object definition, where the semantics

associated with the information object depends solely on the values set for the fields of the information object class, not on the
form of the W TH SYNTAX statement used to set those values (see B.15).

56 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

20.7 The encoding properties specified in clauses 23 to 25 operate together in encoding property groups and use
values of ASN.1 types for their definition. Clause 21 specifies the meaning of values of the types commonly used in the
specification of these encoding properties.

20.8 Some definitive text in clauses 21 and 22 is copied into clauses 22 to 25. Where this occurs, the copied text is
grayed-out, and a reference is given to the definitive text.

20.9 Clause 25 specifies a number of transforms that can be applied to abstract values. Several encoding property
groups require an ordered list of transforms that are to be applied by an encoder. For decoding to be possible, the
transforms applied by an encoder have to be reversible by a decoder in order to recover the original abstract values.
Clauses 23 and 24 specify when transforms have to be reversible, and clause 25 specifies the abstract values for which
any given transform is reversible.

21 Types used in defined syntax specification
NOTE — All ASN.1 type definitions given here assume automatic tags and no extensibility.

21.1 The unit type

21.1.1 The "Uni t " type is:
Unit ::= | NTEGER
{repetitions(0), bit(1l), nibble(4), octet(8), wordl6(16),
dwor d32(32)} (0. . 256)

21.1.2 The default value for this type is always bi t .

21.1.3 An encoding property of this type specifies the unit in which other encoding properties or determinant fields are
counting.

21.1.4 The value of an encoding property of this type is restricted in all cases but one to the non-zero values. In these
cases the encoding property specifies a number of bits. That number of bits determines the unit in which other encoding
properties or determinant fields are counting.

21.1.5 When used in the definition of an encoding object of a class in the repetition category, the value r epeti ti ons
is also allowed, and specifies that the associated count gives the number of repetitions in the encoding.

21.2 The Encodi ngSpaceSi ze type

21.2.1 The "Encodi ngSpaceSi ze" type is:

Encodi ngSpaceSi ze :: = | NTEGER
{ encoder-option-w th-determ nant(-3),
vari abl e-wi t h-det ermi nant (-2),
sel f-delimting-val ues(-1),
fixed-to-max(0)} (-3..MX)

21.2.2 The default value for this type is always sel f - del i mi ti ng- val ues.
21.2.3 An encoding property of this type specifies the size of the encoding space (see 9.21.5).

21.2.4 Positive (non-zero) values specify a fixed size for the encoding space, as the value of type "Uni t " multiplied by
the value of type "Encodi ngSpaceSi ze", in bits. If the value of type "Unit" is "repetitions", then the encoding
space size may be variable (since the encoding space needed for each component may be different), but is always that
fixed number of repetitions, and it is an ECN specification or application error if an abstract value is to be encoded
which does not have that number of repetitions.

21.2.5 The value "encoder - opti on-wi t h- det er mi nant " specifies that the size of the encoding space may vary
according to the abstract value being encoded, and that the encoder shall choose the encoding space size, recording the
chosen size in the associated determinant. In this case, a value of type "Encodi ngSpaceDet er ni nat i on" (see 21.3) or
"Repet i ti onSpaceDet er m nati on" (see 21.7) is required.
NOTE - A value of type "Encodi ngSpaceDet er mi nati on" or "Repeti ti onSpaceDet er m nati on" (to determine the
encoding space size) is required in this case (and in the case of 21.2.6), but the provision of a determinant is allowed in all the
other cases, to support encodings (similar to BER) that use length determinants even when they are redundant. Any difference

between the two determinations is an error. It may, however, not always be possible to determine whether this is an ECN
specification error or is an application error, but conforming encoders are required not to transmit such encodings.

ITU-T Rec. X.692 (03/2002) 57

ISO/IEC 8825-3:2003 (E)

21.2.6 The value "vari abl e-wi t h- det er mi nant " specifies that the size of the encoding space may vary according
to the abstract value being encoded. In this case, a value of type "Encodi ngSpaceDet er m nati on" (see 21.3) or
"Repet i ti onSpaceDet erm nation" (see 21.7) is required (to provide a precise means of determining the size of the
encoding space).

21.2.7 The value "sel f - del i mi ti ng- val ues" specifies that the value encoding is self-delimiting, that is, each value
encodes into a multiple of the specified value of type "Uni t". There shall be no pair of abstract values for which the
encoding of one abstract value is the first part of the encoding of the other abstract value.

NOTE — A decoder can (after possible determination of unused bits and justification) determine the end of the encoding space by

matching the encoding of each possible abstract value with the encoding that is being examined. Precisely one will match in
encodings produced by a conforming encoder. Decoders may develop more efficient but equivalent approaches.

21.2.8 The value "fi xed-t o- max" specifies that the encoding space is to be the same for the encoding of all abstract
values. It specifies that the size of the encoding space is to be the smallest multiple of "Uni t " that can contain the
specified encoding of any one (all) of the abstract values. This value shall not be used if the abstract value to be
encoded into the encoding space is an abstract value associated with a class in the concatenation (see 23.5.2.3) or
repetition category (see 23.13.2.5).

NOTE 1 — A special case is when there is a single abstract value whose value encoding is zero bits. This results in an empty
encoding space (zero bits).

NOTE 2 - If such a specification is applied when a maximum size cannot be determined (for example, for encoding an unbounded
integer), this is an ECN specification error, but conforming encoders are required to refuse to generate encodings in such cases.

21.3 The Encodi ngSpaceDet er ni nati on type

21.3.1 The "Encodi ngSpaceDet er mi nat i on" type is:

Encodi ngSpaceDet er mi nati on ::= ENUMERATED
{field-to-be-set, field-to-be-used, container}

21.3.2 The default value for this type is always "fi el d-t o- be-set ".

21.3.3 An encoding property of this type specifies the way in which the encoding space is determined when an
encoding property of type "Encodi ngSpaceSize" (see 21.2) is set to "variabl e-with-determnant" or
"encoder - opti on-w t h-det ermi nant".

21.3.4 The value "fi el d-to- be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry length information, and used by a decoder. The encoding specification determines how an encoder is to
set the value of this field from the size (in encoding space units) of the encoding space. If a field is set more than once
through the use of "fiel d-to-be-set" or "fl ag-to-be-set" (see 21.7), then it is an ECN specification or an
application error if different values are produced by the different encoding procedures, and encoders shall not generate
encodings in this case.

21.3.5 The value "fi el d-t o- be- used" requires the specification of a REFERENCE to a field whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some other
encoder actions invoked by "fi el d-t o- be-set " or "f | ag- t o- be- set ". The encoding specification determines how a
decoder is to obtain the size of the encoding space from the value of this field. A conforming encoder shall not produce
encodings in which the decoder's transforms of this field do not correctly identify the end of the encoding space.

21.3.6 The value "container" requires either the specification of a REFERENCE to another field whose encoding class
(the container) has a length determinant and whose contents include this encoding space, or of a specification that the
end of the PDU determines the end of the encoding space (using QUTER). The encoding space terminates when the
specified container terminates or when the end of the PDU is encountered. This specification can only be used if the
encoding space of the element being encoded is the last encoding to be placed in the container.

NOTE - It is an ECN encoder's error (possibly resulting from an ECN specification or application error) if additional encodings
are placed in the container.
21.4 The UnusedBi t sDet er mi nati on type

21.4.1 The "UnusedBi t sDet er m nat i on" type is:

UnusedBi t sDet er mi nati on ::= ENUVERATED
{field-to-be-set, field-to-be-used, not-needed}

21.4.2 The default value for this type is always "f i el d-t o- be-set "

21.4.3 An encoding property of this type specifies the way in which a decoder can determine the unused bits when a
value encoding is left or right justified in an encoding space.

58 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

21.4.4 The value "fi el d-to- be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry unused bits information, and used by a decoder. The encoding specification determines how an
encoder is to determine the number of unused bits, and how to set the value of this field from the number of unused bits.
If a field is set more than once through the use of "fi el d-t o- be-set" or "f| ag-t o- be-set " (see 21.7), then it is an
ECN specification or an application error if different values are produced by the different encoding procedures, and
encoders shall not generate encodings in this case.

21.4.5 The value "fi el d-t o- be- used" requires the specification of a REFERENCE to a field whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some other
encoder actions invoked by "fi el d-t o- be-set " or "f1 ag-t o- be- set ". The encoding specification determines how a
decoder is to determine the number of unused bits from the value of this field. A conforming encoder shall not produce
encodings in which the decoder's transforms of this field do not correctly identify the number of unused bits.

21.4.6 The value "not - needed" identifies that a decoder does not require an explicit determinant in order to discover
the number of unused bits. The number of unused bits will be deducible from the encoding specification without
knowledge of the actual abstract value that has been encoded. This determination is described for each value encoding.

21.5 The Optional i tyDeterninati on type

21.5.1 The "OptionalityDetermination" type is:

OptionalityDeterm nation ::= ENUVERATED
{field-to-be-set, field-to-be-used, container, handle, pointer}

21.5.2 The default value for this type is always "f i el d-t o- be-set ".

21.5.3 An encoding property of this type specifies the way in which the presence or absence of an optional component
is determined.

21.5.4 The value "fi el d-to- be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry optionality information, and used by a decoder. The ECN specification will also include an encoding
property that specifies how an encoder is to set the value of this field from a conceptual boolean value which is true if
the optional component is present and false if the optional component is absent. If a field is set more than once through
the use of "fi el d-to-be-set" or "fl ag-to-be-set" (see 21.7), then it is an ECN specification or an application
error if different values are produced by the different encoding procedures, and encoders shall not generate encodings in
this case.

21.5.5 The value "fi el d-t o- be- used" requires the specification of a REFERENCE to a field whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some other
encoder actions invoked by "fiel d-to-be-set" or "fl ag-to-be-set". The specification will also include an
encoding property that specifies how a decoder is to determine the presence or absence of the optional component from
the value of this field. A conforming encoder shall ensure that the value of this field correctly determines the presence or
absence of the optional field.

21.5.6 The value "cont ai ner " requires either the specification of a REFERENCE to another field whose encoding class
(the container) has a length determinant and whose contents include this optional component, or of a specification that
the container is the end of the PDU (using QUTER). If the container end is present when a decoder is looking for the start
of this optional component, then the decoder shall determine that this optional component is absent.
NOTE — This specification can only be used if the abstract values being encoded are such that no further encodings are to be
placed in the container. This may require restrictions to be placed on the abstract values of the ASN.1 type, for example, to
prohibit the inclusion of a later optional component unless all earlier optional components are present. It is either an ECN
specification error or an application error if additional encodings are to be placed in the container following a component whose
optionality is determined in this way, but a conforming encoder shall not generate such encodings.

21.5.7 The value "handl e" requires that an identification handle be specified. This identification handle shall be
exhibited by the encoding object for the optional component and by any possible alternative encoding that can follow if
this optional component is absent, and the value of the handle shall be different for the encoding of the optional
component and all possible alternative encodings that can follow. If the end of any open container (or the end of the
PDU) is detected at the time a decoder is attempting to detect the presence or absence of this optional component, then it
is absent. Otherwise, a decoder shall determine that the component is present if and only if decoding the remaining parts
of the encoding produces a value for the specified identification handle which matches that of the optional component.
It is an ECN specification error if this does not result in correct identification of the presence or absence of an encoding
of the optional component, but conforming encoders shall not generate such encodings.

21.5.8 The value "poi nt er " requires the specification of a start-of-encoding REFERENCE to another field. If that field
is zero, then this component is absent. If it is non-zero, then the rules for a start-of-encoding pointer apply (see 22.3)

ITU-T Rec. X.692 (03/2002) 59

ISO/IEC 8825-3:2003 (E)

21.6 The AlternativeDetermination type

21.6.1 The "AlternativeDetermination" type is:

Al ternativeDeterm nation ::=
ENUVMERATED {fi el d-to-be-set, field-to-be-used, handl e}

21.6.2 The default value for this type is always "field-to-be-set".

21.6.3 An encoding property of this type specifies the way in which a decoder determines which alternative is present
in an encoding of a class in the alternatives category.

21.6.4 The value "fi el d-to-be-set" requires the specification of a REFERENCE to a field that will be set by the
encoder to carry information identifying an alternative, and used by a decoder. The specification will also include an
encoding property that specifies how an encoder is to set the value of this field from a conceptual integer value that
identifies each alternative (using an order specified in other encoding properties). If a field is set more than once
through the use of "fi el d-to-be-set" or "fl ag-to-be-set" (see 21.7), then it is an ECN specification or an
application error if different values are produced by the different encoding procedures, and encoders shall not generate
encodings in this case.

21.6.5 The value "fi el d-t o- be- used" requires the specification of a REFERENCE to a field whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some other
encoder actions invoked by "fiel d-to-be-set" or "fl ag-to-be-set". The specification will also include an
encoding property that specifies how a decoder is to determine (from the value of the referenced field) a conceptual
integer value which identifies the alternative (using an order specified in other encoding properties).

21.6.6 The value "handl e" requires that an identification handle be specified. This identification handle shall be
exhibited by (the encodings of) all of the alternatives in the class, and the encoding of each alternative shall have a
different value for the identification handle. (Violation of this rule is an ECN specification error, but conforming
encoders are required not to generate encodings where this rule is violated.) This value specifies that a decoder shall
determine the alternative that is present by decoding the remaining parts of the encoding to produce a value for the
specified identification handle. The alternative whose identification handle value matches this value is the alternative
that is present. If the end of any open container (or the end of the PDU) is reached before the identification handle can
be decoded, or if the value of the identification handle does not match that of any alternative, then this is an encoding
error.

21.7 The RepetitionSpaceDetermination type

21.7.1 The "Repetiti onSpaceDet erm nati on" type is:

RepetitionSpaceDeterm nati on ::= ENUVERATED
{field-to-be-set, field-to-be-used, flag-to-be-set, flag-to-be-used,
contai ner, pattern, handle, not-needed}

21.7.2 The default value for this type is always "f i el d-t o- be- set ".

21.7.3 An encoding property of this type specifies the way in which a decoder determines the end of the encoding
space in an encoding of a class in the repetition category. It replaces use of an encoding property of type
"Encodi ngSpaceDet er nmi nat i on" in the encoding of repetitions.

21.7.4 The value "field-to-be-set" requires the specification of a REFERENCE to a field that will be set by the encoder to
carry information which identifies the size of the repetition space. The encoding specification determines how an
encoder is to set the value of this field from the size (in repetition space units) of the repetition space. If a field is set
more than once through the use of "fi el d-t o- be-set" or "f| ag-t o- be-set ", then it is an ECN specification or an
application error if different values are produced by the different encoding procedures, and encoders shall not generate
encodings in this case.

21.7.5 The value "fi el d-t o- be- used" requires the specification of a REFERENCE to a field whose value may be set
from the abstract syntax (i.e., a corresponding field appears within the ASN.1 specification) or may be set by some other
encoder actions invoked by "f i el d-t o- be-set " or "f| ag-t o- be- set ". The encoding specification determines how a
decoder is to obtain the size (in repetition space units) of the encoding space from the value of this field. A conforming
encoder shall not produce encodings in which the decoder's transforms of this field do not correctly identify the end of
the encoding space.

21.7.6 The value "f| ag-t o- be- set " requires the specification of a REFERENCE to a field that is part of the repeated
element, and that will be set by the encoder to identify the last element of the repetition. The encoding specification
determines how an encoder is to set the value of this field from a boolean value which is false if the element is the last in

60 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

the repetition, and is true otherwise. If a field is set more than once through the use of "f | ag-t o- be-set " or "fi el d-
t o- be-set ", then it is an ECN specification or an application error if different values are produced by the different
encoding procedures, and encoders shall not generate encodings in this case.

21.7.7 The value "f | ag-t o- be- used" requires the specification of a REFERENCE to a field that is part of the repeated
element and whose value may be set from the abstract syntax (i.e., a corresponding field appears within the ASN.1
specification) or may be set by some other encoder actions invoked by "f| ag-t o- be-set" or "fi el d-to-be-set".
The encoding specification determines how a decoder is to obtain a boolean value from the value of this field. The
boolean value will be false if the element is the last element in the repetition, and true otherwise. A conforming encoder
shall not produce encodings in which the decoder's transforms of this field do not correctly identify the last element of
the repetition.

21.7.8 The value "cont ai ner " requires either the specification of a REFERENCE to another field whose encoding class
(the container) has a length determinant and whose contents include the encoding class in the repetition category, or of a
specification (using QUTER) that the end of the PDU determines the end of the repetitions. The repetitions terminate
when the specified container terminates or when, following the complete encoding of one repetition, the end of the PDU
is encountered.

NOTE - This specification can only be used if the encoding of the (repetition category) class is the last encoding to be placed in

the container. It is an ECN specification error if additional encodings are placed in the container, but conforming encoders shall
not generate such encodings.

21.7.9 The value "pat t er n" specifies that some specified pattern of bits (see 21.10) will terminate the repetitions. In
this case additional encoding properties will require the insertion by an encoder of a specified pattern, and the detection
of this pattern by a decoder. It is an ECN specification error if the encoding of the pattern can be the initial part of the
encoding of an abstract value of a repetition. A conforming encoder shall detect such errors and shall not generate
encodings that violate this rule.

NOTE — An example is a null-terminated character string whose contents are not allowed to include a null character.

21.7.10 The value "handl e" requires that an identification handle be specified. This identification handle shall be
exhibited by the element being repeated, and by all possible (taking account of optionality) following elements. The
value of the identification handle for the element being repeated shall be different from that of all possible following
elements.

21.7.11 The value "not - needed" specifies that the number of repetitions is fixed in the abstract syntax.

NOTE - It is an ECN specification error (which shall be detected and blocked by encoders) if this encoding is specified and the
number of repetitions are not so restricted, or if the application violates that restriction.

21.8 The Justification type

21.8.1 The "Justification" typeis:

Justification ::= CHAO CE
{ left I NTEGER (0. . MAX),
ri ght I NTEGER (0. . MAX)}

21.8.2 The default value for this type is always "ri ght : 0"

21.8.3 An encoding property of this type specifies right or left justification of the encoding of a value within the
encoding space, with an offset in bits from the ends of the encoding space.

21.8.4 The "l ef t " alternative specifies that the leading bit of the value encoding is positioned relative to the leading
edge of the encoding space. The integer value specifies the number of bits between the leading edge of the encoding
space and the leading bit of the value encoding.

NOTE — If the value encoding is not fixed length or self-delimiting, then the use of value padding in a fixed size container can in
some circumstances make it impossible for a decoder to recover the original abstract values. This would be an ECN specification
error.

21.8.5 The "ri ght " alternative specifies that the trailing bit of the value encoding is positioned relative to the trailing
edge of the encoding space. The integer value specifies the number of bits between the trailing bit of the value encoding
and the trailing edge of the encoding space.

21.8.6 The setting of the bits (if any) before or after the value encoding is determined by encoding properties of type
"Paddi ng" and "Pat t er n" (see 21.9 and 21.10).

21.9 The Paddi ng type
21.9.1 The "Paddi ng" type is:

ITU-T Rec. X.692 (03/2002) 61

ISO/IEC 8825-3:2003 (E)

Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option}
21.9.2 The default value for an encoding property of this type is always "zer o".

21.9.3 An encoding property of this type specifies details of the padding for pre-padding, for classes in the pad
category, and for the post-padding of a PDU specified in the #OUTER encoding class.

21.9.4 Ifthe value is "zer 0", then the padding is with zero bits.
21.9.5 Ifthe value is "one", then the padding is with one bits.

21.9.6 If the value is "pattern" then the bits are set according to the encoding property of type "Pattern" (see
21.10).

21.9.7 If the value is "encoder - opt i on", then the encoder freely chooses the bit values.

21.10 The Patt ern and Non- Nul | - Pat t er n types
21.10.1 The "Pattern" type is:

Pattern ::= CHO CE
{bits BI T STRI NG
octets OCTET STRI NG
char 8 I A5Stri ng,
char 16 BMPSt ri ng,
char 32 Uni ver sal Stri ng,
any-of -1 ength I NTEGER (1.. VAX),
di fferent ENUMERATED { any} }

21.10.2 The "Non- Nul | - Pat t er n" type is:

Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:'"H| char8:"" | charl16:"" |
char32:""))

21.10.3 The default value for an encoding property of this type is always "bi ts: ' 0' B".

21.10.4 The "bi ts" or "oct et s" alternative specifies a pattern of length and value equal to the given bitstring or octet
string respectively.

21.10.5 The "char 8" alternative specifies a (multiple of 8-bits) pattern where each character in the given string is
converted to its ISO/IEC 10646-1 value as an 8-bit value.

21.10.6 The "char 16" alternative specifies a (multiple of 16-bits) pattern where each character in the given string is
converted to its ISO/IEC 10646-1 value as a 16-bit value.

21.10.7 The "char 32" alternative specifies a (multiple of 32-bits) pattern where each character in the given string is
converted to its ISO/IEC 10646-1 value as a 32-bit value.

21.10.8 The "any- of -1 engt h" alternative specifies a size for the pattern. The actual value of the pattern is an
encoder's option.

21.10.9 The "di f f er ent: any" value is permitted only when there is another encoding property of type "Pattern" in
the same encoding property group. In this case, either (but not both) of the encoding properties of type "Pat t er n" can
be set to "di f f erent : any". The "different:any" value specifies that the length of the pattern shall be the same as the
length of the pattern specified for the other encoding property. It also specifies that its value is an encoder's option,
provided that the value is different from the value of the pattern specified for the other encoding property.

21.10.10 When used for pre-padding and for justification (but not for other uses), the "Non- Nul | - Pat t er n" is used, and
the pattern is truncated and/or replicated as necessary to provide sufficient bits for the pre-padding, value pre-padding,
or value post-padding.

21.10.11The "di f f er ent : any" value of type "Pat t er n" is excluded from most uses of this type. When a parameter of
type "Pattern" is used to specify the pattern for a boolean value (TRUE, say), then the value "di f f er ent: any" can be
used to specify the pattern for the other boolean value (FALSE in this case). When used in this way, "different:any"
means an encoder's option for the pattern. The encoder may use any pattern it chooses, but it shall be of the same length
as the other pattern and shall differ from it in at least one bit position.

62 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

21.11 The RangeCondi ti on type

21.11.1 The "RangeCondi ti on" type is:

RangeCondi ti on ::= ENUVERATED
{ unbounded- or - no- | ower - bound,
seni - bounded- wi t h- negati ves,
bounded- wi t h- negati ves,
seni - bounded- wi t hout - negati ves,
bounded- wi t hout - negat i ves}

21.11.2 The default value for an encoding property of this type is always "unbounded- or - no- | ower - bound".

21.11.3 An encoding property of type "RangeCondi ti on" is used in the specification of a predicate which tests the
existence and nature of bounds on the integer values associated with an encoding class in the integer category.

21.11.4 The predicate is satisfied for each enumeration value if and only if the following conditions are satisfied by the
bounds on the encoding class in the integer category:

a) unbounded- or - no- | ower - bound: either there are no bounds, or else there is only an upper bound but
no lower bound.

b) seni-bounded-wit h- negati ves: there is a lower bound that is less than zero, but no upper bound.
c) bounded-wi t h- negat i ves: there is a lower bound that is less than zero, and an upper bound.

d) seni-bounded-wi t hout - negat i ves: there is a lower bound that is greater than or equal to zero, but no
upper bound..

e) bounded-wi t hout - negat i ves: there is a lower bound that is greater than or equal to zero, and an upper
bound

NOTE - For any given set of bounds, exactly one predicate will be satisfied.

21.12 The Si zeRangeCondi ti on type

21.12.1 The "Si zeRangeCondi ti on" type is:

Si zeRangeCondi ti on ::= ENUVERATED
{ no-ub-with-zero-1b,
ub-wi th-zero-1b,
no- ub-wi t h-non-zero-1 b,
ub-w t h-non-zero-1b,
fixed-si ze}

21.12.2 The default value for an encoding property of this type is always "no- ub- wi t h- zero-1 b".

21.12.3 An encoding property of type "Si zeRangeCondi ti on" is used to test properties of the bounds in an effective
size constraint associated with a class in the repetition or characterstring category.

21.12.4 The predicate is satisfied for each enumeration value if and only if the effective size constraint satisfies the
following conditions:

a) no-ub-with-zero-1 b: there is no upper bound on the size and the lower bound is zero.

b) ub-wi th-zero-1 b: there is an upper bound on the size and the lower bound is zero.

¢) no-ub-with-non-zero-1 b: there is no upper bound on the size and the lower bound is non-zero.
d) ub-with-non-zero-| b: there is an upper bound on the size and the lower bound is non-zero.

e) fixed-size:the lower bound and the upper bound on the size are the same value.
NOTE - Only the "f i xed- si ze" case overlaps with other predicates.

21.13 The Reversal Speci fi cati on type

21.13.1 The "Rever sal Speci fi cati on" type is:

Rever sal Speci fication ::= ENUVERATED
{no-reversal,
reverse-bits-in-units,
reverse-hal f-units,
reverse-bits-in-half-units}

21.13.2 The default value for an encoding property of this type is always "no-r ever sal ".

ITU-T Rec. X.692 (03/2002) 63

ISO/IEC 8825-3:2003 (E)

21.13.3 An encoding property of type "Rever sal Speci fication" is used in the final transform of bits from an
encoding space into an output buffer for transmission (with the reverse transform being applied for decoding).

NOTE - Bits inserted as a result of pre-padding specified by an encoding object do not form part of the encoding to which bit-
reversal specified by that encoding object, but may be subject to bit-reversal specified by an encoding object for a container in
which the complete encoding is embedded.

21.13.4 Values of this type are always used in conjunction with an encoding property of type "Uni t " that specifies a
unit size in bits (see 21.1).

21.13.5 Itis an ECN specification error if the values "r ever se- hal f-uni t s" and "rever se-bi ts-in-hal f-units"
are used when the encoding property of type "Uni t " is not an even number of bits.

21.13.6 The enumerations specify (in the order of enumerations listed above) either:
a) no reversal of bits; or
b) reversal of the order of half-units (without changing the order of bits in each half unit); or
c) reversal of the order of bits in each half-unit but without reversing the order of the half-units; or

d) reversal of the order of the bits in each unit.

21.13.7 It is an ECN specification error if the number of bits in an encoding to which bit-reversal is applied is not an
integral multiple of "Uni t ".

21.13.8 Bit-reversal can be specified for the encoding of all classes that can appear as fields of encoding structures,
except an encoding class of the alternatives category, which does not use the encoding space concept.

21.14 The Resul t Si ze type
21.14.1 The "Resul t Si ze" type is:
Resul tSize ::= INTEGER {variable(-1), fixed-to-max(0)} (-1..MAX)
21.14.2 The default value for an encoding property of this type is always "vari abl e".
21.14.3 An encoding property of this type specifies the size of the result in a #TRANSFORMclass.

21.14.4 The value "vari abl e" specifies that the size of the #TRANSFORMresult will vary for different abstract values,
and is determined by the detailed specification of the transform.

21.14.5 The value "fi xed- t o- max" specifies that the size of the #TRANSFORMresult is to be the same for the transform
of all abstract values. It specifies that the target size is to be the smallest size that can contain the specified encoding of
any one (all) of the abstract values. The precise details of this specification are defined for each transform in which
values of this type are used.

21.14.6 A positive value of type "Resul t Si ze" specifies that the size of the #TRANSFORMresult is fixed. This value is
used in the specification of the actual transform.

21.15 The Handl eval ue type
21.15.1 The "Handl eVal ue" type is:

Handl eVal ue ::= CHO CE {
bits BIT STRING
octets OCTET STRI NG
nunber | NTEGER (0. . VAX),
tag ENUMERATED { any}}

21.15.2 The "Handl eVal ue" is used to specify the value of an identification handle that is exhibited by particular
encoding objects.

21.15.3 Values of any identification handle that is exhibited by an encoding object are required to be the same for all
abstract values which that encoding object encodes (see 22.9.2.2). The value of an identification handle can be used to
identify the presence or absence of optional components, the choice of alternatives, or the end of a repetition. There are
requirements in such circumstances that the handle values exhibited by the encoding of different alternatives or
components be distinct (see 21.5.7, 21.6.6 and 21.7.10).
NOTE — Values of identification handles exhibited by a given encoding object can, in theory, be determined by encoding a trial
value. However, to ease the implementation task, the ECN specifier is required to specify the value of the handle in all cases

except where (for encodings of the tag class) the value of the identification handle depends on the tag number associated with that
tag class, either directly through implicit generation from an ASN.1 tag, or by mapping from an implicitly generated structure.

64 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

21.15.4 The "bits", "octets" and "nunber " alternatives specify the handle value as a bitstring, octetstring or integer
value respectively. It is an ECN specification error if this value cannot be encoded within the number of bits specified
for the identification handle (see 22.9).

21.15.5 The "t ag: any" alternative specifies that the handle value is determined by the number specified in an ECN
encoding structure for a class in the tag category, or by the tag number mapped from an ASN.1 tag construction. It shall
only be used when specifying the handle identification for the encoding of a class in the tag category.

22 Commonly used encoding property groups

This clause specifies groups of encoding properties that are commonly used in the defined syntax (see clause 20). The
purpose of each group, the restrictions on both the values of encoding properties and the syntax that can be used, as well
as the encoder and decoder actions for each group are also specified.

22.1 Replacement specification
There are three variants of replacement specification:

a) Full replacement specification: This is used for classes in the concatenation category, where replacement
can be of the entire structure, or can selectively replace optional and non-optional components.

b) Structure or component replacement specification: This is used for classes in the alternatives category
and for the #CONDI TI ONAL- REPETI TI ON encoding class, where replacement can be of the entire
structure or of the component.

NOTE — When an encoding object of the #CONDI TI ONAL- REPETI Tl ON class is used to define encodings
for a class in the bitstring, characterstring, or octetstring category, it can only perform structure-only replacement.

¢) Structure-only replacement specification: This is used for classes that do not have components.

22.1.1 Encoding properties, syntax and purpose

22.1.1.1 Full replacement specification uses the following encoding properties:

&#Repl acenent - structure

OPTI ONAL,
&#Repl acenent - st ruct ur e2

OPTI ONAL,
& epl acenent - struct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL,
&r epl acenent - st ruct ur e- encodi ng- obj ect 2 &#Repl acenent - structure2 OPTI ONAL,
&t#tHead- end- st ruct ure OPTI ONAL,
&#Head- end- st ruct ure2 CPTI ONAL

22.1.1.2 The syntax to be used for full replacement specification shall be:

[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
[OPTI ONALS]
[NON- OPTI ONALS]
W TH &#Repl acement - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]
[AND OPTI ONALS W TH &#Repl acement - st ruct ur e2
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect 2
[I NSERT AT HEAD &#Head- end-structure2]]]]

22.1.1.3 Structure or component replacement specification uses the following encoding properties:

&#Repl acenent - structure

OPTI ONAL,
& epl acenent - struct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,
&#Head- end- structure OPTI ONAL

22.1.1.4 The syntax to be used for structure or component replacement specification shall be:
[REPLACE

[STRUCTURE]
[COVPONENT]

ITU-T Rec. X.692 (03/2002) 65

ISO/IEC 8825-3:2003 (E)

[ALL COVPONENTS]

W TH &Repl acenent -structure

[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]]

22.1.1.5 Structure-only replacement specification uses the following encoding properties:

&#Repl acenent - structure
OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL

22.1.1.6 The syntax to be used for structure-only replacement specification shall be:

[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]

22.1.1.7 Use of the W TH SYNTAX for these encoding property groups specifies that either:

a) the encoding class to which this encoding object is applied is to be replaced completely (REPLACE
STRUCTURE); in the case of an encoding class in the optionality category, the entire component is
replaced; in the case of a #CONDI TI ONAL- REPETI Tl ON encoding object used in defining an encoding
object for a class in the bitstring, characterstring, octetstring or repetition category, then (if the range
condition is satisfied), the entire bitstring, characterstring, octetstring or repetition structure is replaced; or

b) all its components (except for the structure-only specification) are to be replaced (with the same
replacement action for all components) ("REPLACE COVPONENT" or "REPLACE ALL COVPONENTS'"); or

c) all its optional components (only for full replacement specification) are to be replaced ("REPLACE
OPTI ONALS"); or

d) all its non-optional components (only for full replacement specification) are to be replaced ("REPLACE
NON- OPTI ONALS"); or

e) all its components (only for full replacement specification) are to be replaced, with different replacement
actions for optionals and for non-optionals ("REPLACE NON- OPTI ONALS AND OPTI ONALS").

22.1.1.8 "REPLACE COVPONENT" is a synonym for "REPLACE ALL COMPONENTS". It would be normal but not required
to use this if there is only a single component.

22.1.1.9 The optional "ENCODED BY"s specify an encoding object for the replacement structure.

22.1.1.10 The optional "I NSERT AT HEAD'"s specify an encoding structure (the head-end insertion) to be inserted before
all components of the (constructor) class performing the replacement. There is one head-end insertion for each
component that is replaced, and they are inserted in the order of the original components.

22.1.2 Specification restrictions
22.1.2.1 Exactly one of the permitted syntaxes between "REPLACE" and "W TH'" shall be used.

22.1.2.2 The "W TH" replacement structures shall be parameterized encoding structures with a single encoding class
parameter. When they are specified in the above defined syntax, only the class reference name of the structure shall be
given. It shall not have any parameter list in this use of the names.

22.1.2.3 These parameterized structures are instantiated during the replacement action with an actual parameter as
specified in 22.1.3. The use of the dummy parameter in the replacement parameterized structures shall be consistent
with the class of the actual parameter that will be supplied in the replacement action.

NOTE - In particular, if "REPLACE STRUCTURE" is used for an encoding class in the tag category, the dummy parameter can
only occur in the replacement structure where an encoding class in the tag category is permitted.

22.1.2.4 The "ENCODED BY" encoding objects shall be parameterized encoding objects for the "W TH' encoding
structures. They shall have a dummy parameter (#D, say) that is an encoding class, and they shall be defined in a
parameterized encoding object assignment in which the governor is the corresponding "W TH" parameterized encoding
structure, instantiated with #D. When they are specified in the above defined syntax, the encoding object reference name
only shall be given. They shall not have any parameter list in this use of the names.

22.1.2.5 They are instantiated during the replacement action with an actual parameter which is the same as the actual
parameter used to instantiate the corresponding "W TH' replacement encoding structures. They may also have:

- (optionally) another (but only one) dummy parameter that is an encoding object set; when they are
instantiated during the replacement action, the actual parameter for this dummy parameter is the
current combined encoding object set;

66 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

- (conditionally) another (but only one) dummy parameter that is a REFERENCE parameter. This
parameter shall be present if and only if "I NSERT AT HEAD" is specified. When the encoding
objects are instantiated during the replacement action, the actual parameter for this dummy
parameter is a reference to the corresponding "I NSERT AT HEAD' structure.

22.1.2.6 All fields of the replacement structure that are not part of the encoding class parameter are auxiliary fields, and
shall be set by the encoding of the replacement structure.

22.1.2.7 The "I NSERT AT HEAD" encoding structures shall not have dummy parameters. All their fields are auxiliary
fields, and shall be set by the "ENCODED BY" encoding object through its REFERENCE parameter.

22.1.2.8 If an encoding object has a "REPLACE STRUCTURE" clause, it shall not have an "INSERT AT HEAD" clause
and shall have an "ENCCDED BY" clause.

22.1.3 Encoder actions

22.1.3.1 If an encoding object of a class in the bit-field group of categories or in the tag category specifies "REPLACE
STRUCTURE", then an encoder shall replace the structure with an instantiation of the replacement structure, using the
name of the original structure as the actual parameter.

22.1.3.2 If an encoding object of a class in the encoding constructor category specifies "REPLACE STRUCTURE", then an
encoder shall replace the entire construction with an instantiation of the replacement structure, using the entire original
construction as the actual parameter.

22.1.3.3 If an encoding object of a class in the optionality category specifies "REPLACE STRUCTURE", then an encoder
shall replace the entire optional component with a non-optional instantiation of the replacement structure. The actual
parameter shall be a hidden structure name (which matches no other structure, and which can never have encoding
objects). This hidden structure name shall de-reference to the entire original optional component (including any classes
in the tag category) except for the class in the optionality category.

22.1.3.4 If an encoding object of any class specifies "REPLACE COVPONENT", "REPLACE ALL COMPONENTS", "REPLACE
OPTI ONAL COMPONENTS", or "REPLACE NON- OPTI ONAL COMPONENTS", then an encoder shall replace the entire
specified component(s) with a non-optional instantiation of the replacement structure. The actual parameter shall be a
hidden structure name (which matches no other structure, and which can never have encoding objects). This hidden
structure name shall de-reference to the entire original optional component (including any classes in the tag category)
except for any class in the optionality category.

22.1.3.5 All abstract values and tag numbers of the original structure or component shall be mapped to corresponding
abstract values and tag numbers in the actual parameter of the replacement structure. Values of other fields in the
replacement structure shall be set according to the specification in the replacement structure encoding object.

22.1.3.6 If a head-end insertion is specified, then the encoder shall insert the head-end structure before all components
of the structure whose encoding object is performing the replacement. Head-end insertions shall be inserted in the same
textual order as the components being replaced. The values of fields of this structure shall be set in accordance with the
specification in the replacement structure encoding object.

NOTE — These structures will normally be a simple integer field providing a location determinant for the field being replaced.

22.1.3.7 The encoder shall instantiate the replacement structure encoding-object(s) with actual parameters as follows:

a) The dummy parameter that is an encoding class shall be given an actual parameter that is the same as the
actual parameter of the instantiation of the replacement structure.

b) The dummy parameter (if any) that is a REFERENCE parameter shall be given an actual parameter that is a
reference to the inserted head-end structure.

¢) The dummy parameter (if any) that is an encoding object set (whose governor is #ENCODI NGS) shall be
given an actual parameter that is the current combined encoding object set.

22.1.3.8 The encoder shall then use this instantiated encoding object to encode the corresponding replacement structure
instead of the combined encoding object set.

NOTE - The encoding of the head-end insertions is determined by the application of the current combined encoding object set.

22.1.4 Decoder actions

A decoder shall generate (for an application) the abstract values of the original structure that was being encoded, hiding
any replacement activity (even if performed by repeated application of replacements).

ITU-T Rec. X.692 (03/2002) 67

ISO/IEC 8825-3:2003 (E)

22.2 Pre-alignment and padding specification

22.2.1 Encoding properties, syntax and purpose

22.2.1.1 Pre-alignment and padding specification uses the following encoding properties:

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0'B

22.2.1.2 The syntax to be used for pre-alignment and padding specification shall be:

[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]

22.2.1.3 The definition of types used in pre-alignment and padding specification is:

Unit ::= I NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option} -- (see 21.9)
Pattern ::= CHO CE
{bits BI' T STRI NG
octets OCTET STRI NG
char 8 I A5String,
char 16 BMPSt ri ng,
char 32 Uni versal Stri ng,
any-of -1 ength I NTEGER (1..MAX),
di fferent ENUMERATED {any} }
Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:'"'"H| char8:"" | charl6:"" |

char32:"")) -- (see 21.10)

22.2.1.4 The pre-alignment encoding properties use a value of type "Uni t " to specify that a container is to start at a
multiple of "Uni t " bits from the alignment point. The alignment point is the start of the encoding of the type to which
an ELM applied an encoding, except when reset for the encoding of a contained type by the use of a #OUTER encoding
object (see clause 25). Encoding properties of type "Paddi ng" and "Pat t er n" are used to control the bits that provide
padding to the required alignment. Specification of "ALI GNED TO NEXT" produces the minimum number of inserted
bits. Specification of "ALI GNED TO ANY" leaves the actual number of inserted bits (subject to the above restriction to a
multiple of "Unit") as an encoders option, and requires the specification of a start pointer.

22.2.2 Specification constraints
22.2.2.1 At most one of "NEXT" and "ANY" shall be specified. When not specified, "NEXT" is assumed.

22.2.2.2 If "ALI GNED TO ANY" is specified, then the encoding object specification shall include the "START- PO NTER"
clause.

22.2.3 Encoder actions

22.2.3.1 If "NEXT" is specified (or is defaulted), the encoder shall insert the minimum number of bits necessary to ensure
that the total number of bits in the encoding (from the alignment point up to the beginning of the container, see 22.2.1.4)
is a multiple of the encoding property of type "Uni t .

22.2.3.2 If "ANY" is specified, the encoder shall insert an encoder-dependent number of bits, provided that the total
number of bits in the encoding (from the alignment point) is a multiple of the encoding property of type "Uni t .

22.2.3.3 The inserted bits shall be set so that the first inserted bit is the leading bit of "Pattern”, and so on. If more bits
are needed than are present in the encoding property of type "Pattern", then the pattern shall be re-used, most significant
bit first.

22.2.4 Decoder actions

22.2.4.1 The decoder shall determine the number of inserted bits from the encoder actions if "NEXT" is specified

68 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)
22.2.4.2 The decoder shall determine the number of inserted bits from the start pointer specification if "ANY" is
specified.

22.2.4.3 In all cases, the decoder shall discard the inserted bits transparently to the application. It shall not diagnose an
encoder or a specification error if the bits are not in agreement with the specified encoders actions.

22.3 Start pointer specification

22.3.1 Encoding properties, syntax and purpose

22.3.1.1 Start pointer specification uses the following encoding properties:

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL

22.3.1.2 The syntax to be used for start pointer specification shall be:
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder -transf orns]]

22.3.1.3 The definition of the type used in start pointer specification is:

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)

22.3.1.4 This specification identifies the start of the encoding space for an element. If the start of the encoding space for
the element is an offset of "n" "MULTI PLE OF" units, then the value placed in the field referenced by the "START-
PO NTER" encoding property is the value obtained by applying "ENCODER- TRANSFORMS" to "n".

NOTE 1 — If "MULTI PLE OF" is not "bi t 8", this implies that that offset from the start of the field referenced by the "START-
PO NTER" encoding property to the start of the encoding space is required to be an integral multiple of "MULTI PLE OF" units.

NOTE 2 — There will in general be encodings of other elements, and perhaps of other start-pointers between the field referenced
by the "START- PO NTER" encoding property and the start of the encoding of this element.

22.3.2 Specification constraints
22.3.2.1 If "ENCODER- TRANSFORMS" is not present, then "START- PO NTER" shall be a class in the integer category.

22.3.2.2 If "ENCODER- TRANSFORMS" is present, then "START- PO NTER" shall be a class with a category that can encode
a value of the result of the final transform in "ENCODER- TRANSFORMS".

22.3.2.3 It is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not reversible
for the abstract value to which it is applied. The first transform shall have a source which is integer.

22.3.3 Encoder actions

22.3.3.1 The encoder shall determine the number "n" of "MULTI PLE OF" units from the start of the encoding of the
"START- PO NTER" field (after any pre-alignment of that field) to the start of the encoding of the element with the start-
pointer specification (after any pre-alignment of that element). It is an ECN specification error if "n" is not integral. If
the element being encoded is optional, and is absent, then "n" shall be set to zero.

22.3.3.2 The value "n" shall be transformed using the "ENCODER- TRANSFORMB" (if present) to produce a conceptual
value "m". If this resulting value "m" is not an abstract value that can be associated with the encoding class of the
"START- PO NTER", then it is an ECN specification error, and encoding shall not proceed. Otherwise the value "m" shall
be the value encoded in the field referenced by "START- PO NTER".

NOTE — The encoding object applied to the field referenced by "START- PO NTER" will determine the encoding of the value

llmH.
22.3.4 Decoder actions

22.3.4.1 The decoder shall determine the conceptual value "m" in the field referenced by "START- PO NTER", and shall
use knowledge of the encoder's actions to reverse the transforms (if any) to produce the integer value "n".

22.3.4.2 If "n" is zero, then the decoder shall diagnose an encoder's error if the element being decoded is not an optional
element with an optionality specification determining optionality by the start pointer. If "n" is zero, and the element
being decoded is an optional element with an optionality specification determining optionality by the start pointer, then
the decoder shall determine that the element is absent.

ITU-T Rec. X.692 (03/2002) 69

ISO/IEC 8825-3:2003 (E)

22.3.4.3 The value "n" is multiplied by "MULTI PLE OF", and the start of the encoding of the "START- PO NTER" field is
added to produce a position "p". If "p" is a position in the encoding that is earlier than the current decoding point, then
the decoder shall diagnose an encoding error.

22.3.4.4 If "p" is a position in the encoding that is equal to or beyond the current decoding point, then the decoder shall

silently ignore all bits up to position "p", and shall continue decoding of this element from position "p".

22.4 Encoding space specification

22.4.1 Encoding properties, syntax and purpose

22.4.1.1 Encoding space specification uses the following encoding properties:

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,
&encodi ng- space- det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT fi el d-t o- be-set,
&encodi ng- space-ref erence REFERENCE OPTI ONAL,
&Encoder - t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder - transf orms #TRANSFORM ORDERED OPTI ONAL

22.4.1.2 The syntax to be used for encoding space specification shall be:

ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det er m nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or]
[DECODER- TRANSFORMB &Decoder -t ransf or ns] |

22.4.1.3 The definition of types used in this specification is:

Encodi ngSpaceSi ze ::= | NTEGER
{ encoder-option-with-determ nant(-3),
vari abl e-w t h-det erm nant (-2),
sel f-deliniting-values(-1),
fixed-to-nmax(0)} (-3..NMAX) -- (see 21.2)

Unit ::= I NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dwor d32(32)} (0..256) -- (see 21.1)
Encodi ngSpaceDet er mi nati on ::= ENUVERATED
{field-to-be-set, field-to-be-used, container} -- (see 21.3)

22.4.1.4 The purpose of this specification is to determine encoder and decoder actions to ensure that a decoder can
correctly determine the end of an encoding space.
NOTE — An actual value encoding does not necessarily fill the entire encoding space, and recovery of the value encoding by a
decoder will in general also require actions specified for value padding and justification (see 22.8).

22.4.1.5 The meaning of the encoding properties of type "Unit", "Encodi ngSpaceSize", and
"Encodi ngSpaceDet er mi nat i on" were given in 21.1, 21.2, and 21.3. Together these specify the way in which the end
of the encoding space for this element is determined.
NOTE - "vari abl e-wi t h- det er mi nant " can be specified even if the encoding space is fixed size, if the ECN specifier
requires that a length determinant is to be included, even if not needed.

22.4.1.6 The "USI NG' specification is a reference which enables a decoder to determine the end of the encoding space.
It is a reference to an auxiliary field or to a field carrying abstract values, or to a container, depending on the value of
"DETERM NED BY".

22.4.2 Specification restrictions

22.4.2.1 If "SI ZE" is "vari abl e-wi t h- det er mi nant " and "DETERM NED BY" is not present, then the default value
("field-to-be-set")isassumed.

22.4.2.2 "USI NG' shall be specified if and only if "SIZE' is 'variable-with-determ nant" or
"encoder - opti on-wi t h-det erm nant ".

70 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

22.4.2.3 "ENCCDER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"field-to-be-set". The "USING" reference in this case shall be an auxiliary field of category bitstring,
characterstring or integer.

22.4.2.4 Tt is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not reversible
for the abstract value to which it is applied. The first transform shall have a source which is integer and the last
transform shall have a result which can be encoded by the class of the field referenced by "USI NG'.

22.4.2.5 "DECCDER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to "fi el d-t o- be- used". The first
transform shall have a source which is the same as the category of the field referenced by "USI NG' which shall not be an
auxiliary field. The last transform shall have a result which is integer.

22.4.2.6 The "USI NG' encoding property, if present, shall be a reference to a field that is present in the encoding earlier
than the field being encoded. It is an application or an ECN specification error if, in an instance of encoding, the field
being encoded is present but the field referenced by the "USI NG' encoding property is absent (through the exercise of
optionality).

22.4.2.7 If "DETERM NED BY" is "container", the "USI NG' reference shall be to a concatenation or to a repetition (or to a
bitstring or octetstring with a contained type) in which the element being encoded is a component (or a component of a
component, to any depth). It is an application or an ECN specification error if, in an instance of encoding, later elements
within the same concatenation or repetition are to be encoded.

22.4.2.8 This specification is considered set if the "ENCODI NG SPACE" keyword is used, and it is mandatory for it to be
set in all places in the defined syntax where it is allowed. Defaulting all encoding properties of this group (e.g., use of
"ENCODI NG- SPACE" alone) would not satisfy the above constraints.

22.43 Encoder actions
22.4.3.1 Encoders shall not generate encodings if the conditions of 22.4.2 are not satisfied.

22.4.3.2 If "SI ZE" is a positive value, then the encoding space is that multiple of "MULTI PLE OF" units and there is no
further encoder action.

22.4.3.3 If "SI ZE" is not set to a positive value, then the encoder shall determine the size ("'s", say) of the encoding
space in "MULTI PLE OF" units from the value encoding specification. This determination is specified in the clauses on
value encoding specification.

22.4.3.4 If "SI ZE" is "encoder-option-with-determinant" then the encoder (as an encoder's option) may increase the size
"s" (as determined in 22.4.3.3) in "MULTI PLE OF" units from that determined from the value encoding specification to
any value which can be encoded in the associated determinant.

22.4.3.5 If "SI ZE" is "f i xed-t o- max" or to "sel f - del i m ti ng- val ues", then there is no further encoder action.

22.4.3.6 If "SI ZE" is "vari abl e-wi t h-det erni nant" and "DETERM NED BY" is "cont ai ner", then there is no
further encoder action.

22.4.3.7 If "DETERM NED BY" is "fi el d-to-be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMS" (if any) to the value "s" to produce a value that shall be encoded in the "USI NG' reference.

NOTE — The encoding of the "USI NG' reference (bit-field "A", say) in this case appears earlier in the encoding than the encoding
of this field (bit-field "B", say), and an encoder will need to defer the encoding of bit-field "A" until the value to be encoded has
been determined by the encoding of bit-field "B".
22.4.3.8 If "DETERM NED BY" is "field-to-be-used" then the encoder shall check that the value in the "USI NG' reference
when transformed by the "DECODER- TRANSFORMS" (if any) is equal to "s". It is an application error if this condition is
not met, and encoding shall not proceed.

22.4.4 Decoder actions

22.4.4.1 If "SI ZE" is a positive value, then the decoder determines the encoding space as that multiple of "MULTI PLE
OF" units.

22.4.4.2 If "SI ZE" is "f i xed-t o- max" or to "sel f - del i mi ti ng- val ues", then the decoder shall determine the end of
the encoding space in accordance with the specification of the value encoding. This determination is specified in the
clauses on value encoding specification.

22.4.4.3 If "SI ZE" is "vari abl e-wi t h- det er mi nant " and "DETERM NED BY" is set to "cont ai ner ", then the decoder
shall use the end of the container specified by "USI NG' as the end of the encoding space.

ITU-T Rec. X.692 (03/2002) 71

ISO/IEC 8825-3:2003 (E)

22444 1f "SIZE" is "variable-with-determ nant" and "DETERM NED BY" is set to (or defaults to)
"fiel d-to-be-set", then the decoder shall recover the value "s" by applying the reversal of the "ENCODER-
TRANSFORMB" (if any) to the value of the "USI NG' reference.

22.4.4.5 If "DETERM NED BY" is "fi el d-t o- be- used" then the decoder shall recover the value "s" by applying the
"DECODER- TRANSFORMS" (if any) to the value of that field.
22.5 Optionality determination

22.5.1 Encoding properties, syntax and purpose

22.5.1.1 Optionality determination uses the following encoding properties:

&optionality-determnation OptionalityDeterm nation

DEFAULT fi el d-to- be-set,
&optionality-reference REFERENCE OPTI ONAL,
&Encoder - t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&andl e-i d Printabl eString

DEFAULT "def aul t - handl e"

22.5.1.2 The syntax to be used for optionality determination shall be:

PRESENCE
[DETERM NED BY &optional ity-deternination
[HANDLE &handl e-i d]]
[USI NG &optionality-reference
[ENCODER- TRANSFORVS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMB &Decoder -t r ansf or ms] |

22.5.1.3 The definition of types used in optionality determination is:

OptionalityDeterm nation ::= ENUMERATED
{field-to-be-set, field-to-be-used, container, handle, pointer} -- (see 21.5)

22.5.1.4 The purpose of this specification is to specify rules that ensure that a decoder can correctly determine whether
an encoder has encoded a value of an optional component. Where a pointer is used to determine optionality, pre-
alignment and start pointer specification is also required.

22.5.1.5 An encoder will encode the value of an optional component if required to do so by the application, unless such
an encoding would be in violation of rules governing the presence of optional components.

NOTE — An example of violation of such a rule would be where the presence of an (absent) optional component was to be
determined by the end of a container, and the application requested that later optional components in the same container be
encoded.

22.5.1.6 This specification is considered set if the "PRESENCE" keyword is used, and it is mandatory for it to be set in
all places in the defined syntax where it is allowed. Defaulting all other parts of this defined syntax (e.g., use of
"PRESENCE" alone) would not satisfy the above constraints.

22.5.2 Specification restrictions

22.5.2.1 If "DETERM NED BY" is not present, then the default value ("f i el d-t o- be- set ") is assumed.
22.5.2.2 "HANDLE" shall not be specified unless "DETERM NED BY" is "handl e".

22.5.2.3 "USI NG' shall not be specified if "DETERM NED BY" is "handle" or "pointer".

22.5.2.4 If "DETERM NED BY" is "poi nt er ", there shall be a "START- PO NTER" specification in the same encoding
object (see 22.3).

NOTE — A start pointer specification normally also needs a pre-alignment specification with "ALI GNED TO ANY" (see 22.2).

22.5.2.5 If "HANDLE" is specified, then the component whose presence is being determined, together with all following
optional and the next mandatory encoding (if any) shall all be produced by encoding objects whose specifications all
exhibit an identification handle with the same name as "HANDLE". The next mandatory encoding may be a component of
the concatenation containing the optional component, or may be an encoding following the concatenation. The value of
the identification handle shall be different for all these components.

NOTE - It is a requirement that the bits that form an identification handle shall have the same value for all abstract values
encoded by an encoding object exhibiting that identification handle (see 22.9.2.2).

72 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

22.5.2.6 "ENCCDER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"fiel d-to-be-set". The "USI NG' reference in this case shall be an auxiliary field of category bitstring, boolean,
characterstring or integer.

22.5.2.7 It is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not reversible
for the abstract value to which it is applied. The first transform shall have a source which is boolean and the last
transform shall have a result which can be encoded by the class of the field referenced by "USI NG'.

22.5.2.8 "DECCDER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to "fi el d-t o- be- used". The first
transform shall have a source which is the same as the category of the field referenced by "USI NG' which shall not be an
auxiliary field. The last transform shall have a result which is boolean.

22.5.2.9 The "USI NG' encoding property, if present, shall be a reference to a field that is present in the encoding earlier
than the field whose presence is being determined. It is an application or an ECN specification error if, in an instance of
encoding, the field referenced by the "USI NG' encoding property is required by a decoder but is absent (through the
exercise of optionality).

22.5.2.10 If "DETERM NED BY" is "cont ai ner ", the "USI NG' reference shall be to a concatenation or to a repetition (or
to a bitstring or octetstring with a contained type) in which the element being encoded is a component (or a component
of a component, to any depth). It is an application or an ECN specification error if, in an instance of encoding, later
elements within the same concatenation or repetition are to be encoded when the component whose optionality is being
determined is absent.

22.5.2.11 If "DETERM NED BY" is "cont ai ner ", then it is an ECN specification error if any of the abstract values of the
optional component have an encoding that is zero bits.

22.5.3 Encoder actions
22.5.3.1 Encoders shall not generate encodings if the conditions of 22.5.2 are not satisfied.

22.5.3.2 An encoder shall determine whether the application wishes the optional component to be encoded, and shall
create a conceptual boolean value "el enent -i s- present " set to "TRUE" if a value of the component is to be encoded,
and to "FALSE" otherwise.

22.5.3.3 If "DETERM NED BY" is "fi el d-to-be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMS" (if any) to the conceptual boolean value "el ement -i s- present" to produce a value that
shall be encoded in the "USI NG' reference.

NOTE — The encoding of the "USI NG' reference in this case appears earlier in the encoding than the encoding of this field, and
an encoder will need to suspend the encoding of that field until the value to be encoded has been determined by the encoding of
this field.

22.5.3.4 If "DETERM NED BY" is "field-to-be-used" then the encoder shall check that the value in the "USI NG' reference
when transformed by the "DECODER- TRANSFORMS" (if any) is a boolean value equal to the conceptual value "element-is-
present". It is an application error if this condition is not met, and encoding shall not proceed.

22.5.3.5 If "DETERM NED BY" is "container" there is no further action needed by the encoder, except to detect an error
and to cease encoding if the application requests the encoding of further components in the "USI NG' container when the
conceptual value "el enent -i s- present " is false for this optional component.

22.5.3.6 If "DETERM NED BY" is "handl e" there is no further action needed by the encoder.

22.5.3.7 If "DETERM NED BY" is "poi nt er " then there are no encoder actions needed except those of the accompanying
pre-alignment (if any) and start pointer specifications.

22.5.4 Decoder actions

22.5.4.1 If "DETERM NED BY" is set to (or defaults to) "fi el d-t o- be-set ", then the decoder shall recover the value
"el ement -i s- present " by applying the reversal of the "ENCODER- TRANSFORMVB" (if any) to the value of the "USI NG'
reference.

22.5.4.2 If "DETERM NED BY" is "fiel d-to-be-used" then the decoder shall recover the conceptual value
"el ement - i s- present " by applying the "DECODER- TRANSFORVS" (if any) to the value of that field.

22.5.4.3 If "DETERM NED BY" is "cont ai ner " then the decoder shall set the conceptual value "el ement - i s- present "
to TRUE if and only if there is at least one bit remaining in the "USI NG' container.

22.5.4.4 If "DETERM NED BY" is "handl e", then the decoder shall determine the value of the specified identification
handle. If the value matches match the value of the identification handle of the optional component, then the decoder
shall set the conceptual value "el enent -i s- pr esent " to TRUE, otherwise the decoder shall set it to FALSE.

ITU-T Rec. X.692 (03/2002) 73

ISO/IEC 8825-3:2003 (E)

22.5.4.5 If "DETERM NED BY" is "pointer" then the decoder shall proceed as specified in 22.3 in order to determine the
conceptual value of "el enent -i s- present ".

22.5.4.6 If the decoder determines (by any of the above means) that the conceptual value "el enent -i s- present " is
FALSE, then decoding proceeds to the next component, otherwise the decoder expects an encoding of a value of the
optional component and will diagnose an encoding error if one is not present.

22.6 Alternative determination

22.6.1 Encoding properties, syntax and purpose

22.6.1.1 Alternative determination uses the following encoding properties:

&al ternative-determ nation Al ternativeDetermnation
DEFAULT fi el d-to-be-set,
&al ternati ve-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&handl e-i d PrintableString
DEFAULT "defaul t - handl e",
&al ternative-ordering ENUVERATED {t extual , tag}

DEFAULT t ext ual

22.6.1.2 The syntax to be used for alternative determination shall be:

ALTERNATI VE
[DETERM NED BY &al ternati ve-determ nation
[HANDLE &handl e-i d]]
[USING &al ternative-reference
[ORDER &al ternative-ordering]
[ENCODER- TRANSFORMS &Encoder -t r ansf or ms]
[DECODER- TRANSFORMS &Decoder -t r ansf or ns] |

22.6.1.3 The definition of types used for alternative determination is:

Al ternativeDeterm nation ::=
ENUMERATED {fi el d-to-be-set, field-to-be-used, handle} -- (see 21.6)

22.6.1.4 The purpose of this specification is to determine the rules that ensure that a decoder can correctly identify
which component of an encoding class in the alternatives category has been encoded.

22.6.2 Specification restrictions

22.6.2.1 If "DETERM NED BY" is not present, then the default value ("f i el d-t o- be- set ") is assumed.
22.6.2.2 "HANDLE" shall not be specified unless "DETERM NED BY" is "handl e".

22.6.2.3 "USI NG' shall not be specified if "DETERM NED BY" is "handl e".

22.6.2.4 If "HANDLE" is specified, then all the alternatives of the encoding class in the alternatives category shall be
encoded by encoding objects whose specification exhibits and defines an identification handle with the same name as
"HANDLE", and with the same value of the identification handle. The value of the identification handle shall be different
for all these alternatives.

NOTE - It is a requirement that an identification handle shall have the same value for all abstract values encoded by an encoding
object exhibiting that identification handle (see 22.9.2.2).

22.6.2.5 "ENCODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)

"fi el d-to-be-set". The first transform shall have a source which is integer and the last transform shall have a result
which can be encoded by the class of the field referenced by "USI NG'.

22.6.2.6 It is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not reversible
for the abstract value to which it is applied.

22.6.2.7 "DECCDER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to "fi el d-t o- be- used". The first
transform shall have a source which is the same as the category of the field referenced by "USI NG' which shall not be an
auxiliary field. The last transform shall have a result which is integer.

22.6.2.8 The "USI NG' encoding property, if present, shall be a reference to a field that is present in the encoding earlier
than the encoding of the alternative. It is an application or an ECN specification error if, in an instance of encoding, the
field referenced by the "USI NG' encoding property is required by a decoder but is absent (through the exercise of
optionality).

74 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

22.6.2.9 This specification is considered set if the "ALTERNATI VE" keyword is used, and it is mandatory for it to be set
in all places in the defined syntax where it is allowed. Defaulting all other parts of this defined syntax (e.g., use of
"ALTERNATI VE" alone) would not satisfy the above constraints.

22.6.2.10If "ORDER" is "t ag", then every alternative shall start with an encoding class in the tag category. The tag
number associated with this class is called the component-tag.

22.6.2.11 The component-tags of each alternative shall be distinct.

22.6.3 Encoder actions
22.6.3.1 Encoders shall not generate encodings if the conditions of 22.6.2 are not satisfied.

22.6.3.2 An encoder shall determine which alternative the application wishes to be encoded, and shall create a
conceptual integer value "alternative-index" to identify that alternative.

22.6.3.3 The value "alternative-index" shall be zero for the first alternative, one for the next, and so on, where the order
of the alternatives is determined by "ORDER'".

22.6.3.4 If "ORDER" is "textual", the textual order in the ASN.1 type specification or the ECN structure definition shall
be used. If "ORDER" is "tag", then the order shall be that of the tag numbers in the component-tags (lowest tag number
first).

22.6.3.5 If "DETERM NED BY" is "fi el d-to-be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMB" (if any) to the conceptual value "alternative-index" to produce a value that shall be encoded in
the "USI NG' reference.

NOTE - The encoding of the "USI NG' reference in this case appears earlier in the encoding than the encoding of the alternative,
and an encoder will need to suspend the encoding of that field until the alternative to be encoded has been determined.

22.6.3.6 If "DETERM NED BY" is "fi el d-t o- be- used" then the encoder shall check that the value in the "USI NG'
reference when transformed by the "DECODER- TRANSFORMS" (if any) is an integer value equal to the conceptual value
"alternative-index". It is an application error if this condition is not met, and encoding shall not proceed.

22.6.3.7 If "DETERM NED BY" is "handl e" there is no further action needed by the encoder.

22.6.4 Decoder actions

22.6.4.1 The decoder shall use "ORDER" as specified for encoder actions to determine the "alternative-index" value that
is associated with each alternative, and shall assume the presence of an encoding of the associated alternative once an
"alternative-index" conceptual value has been determined.

22.6.4.2 If "DETERMINED BY" is set to (or defaults to) "field-to-be-set", then the decoder shall recover the value
"alternative-index" by applying the reversal of the "ENCODER- TRANSFORMS" (if any) to the value of the "USING"
reference.

22.6.4.3 If "DETERM NED BY" is "fiel d-to-be-used" then the decoder shall recover the conceptual value
"alternative-index" by applying the "DECODER- TRANSFORMS" (if any) to the value of that field.

22.6.4.4 If "DETERM NED BY" is "handl e", then the decoder shall determine the value of the identification handle. This
value shall be compared to the value of the identification handle of each of the alternatives. If none match, then the
decoder shall diagnose an encoder's error. Otherwise the conceptual value "alternative-index" shall be set to the
matching alternative.

22.7 Repetition space specification

22.7.1 Encoding properties, syntax and purpose

22.7.1.1 Repetition space specification uses the following encoding properties:

& epetition-space-size Encodi ngSpaceSi ze

DEFAULT sel f-delimting-val ues,
& epetition-space-unit Uni t

DEFAULT bi t,

& epetition-space-determ nation Repetiti onSpaceDet erni nati on
DEFAULT fi el d-t o- be-set,

&mai n-r ef er ence REFERENCE OPTI ONAL,
&Encoder -t ransf or s #TRANSFORM ORDERED COPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&andl e-i d Printabl eString

DEFAULT "def aul t - handl e",

ITU-T Rec. X.692 (03/2002) 75

ISO/IEC 8825-3:2003 (E)

& erm nation-pattern Non- Nul | -Pattern (ALL EXCEPT
different:any) DEFAULT bits '0'B

22.7.1.2 The syntax to be used for repetition space specification shall be:

REPETI TI ON- SPACE

[SI ZE &repetition-space-size
[MULTI PLE OF &repetition-space-unit]]

[DETERM NED BY &repetition-space-detern nation
[HANDLE &handl e-i d]]

[USI NG &mai n-ref erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ms]
[DECODER- TRANSFORMS &Decoder -t r ansf or ns] |

[PATTERN &t ermi nati on-pattern]

22.7.1.3 The definition of types used in this specification is:

Encodi ngSpaceSi ze ::= | NTEGER
{ encoder-option-wth-determ nant(-3),
vari abl e-wi t h-determ nant (-2),
sel f-delimting-val ues(-1),
fixed-to-max(0)} (-3..MAX) -- (see 21.2)

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)

RepetitionSpaceDeterm nation ::= ENUMERATED
{field-to-be-set, field-to-be-used, flag-to-be-set, flag-to-be-used,
contai ner, pattern, handl e, not-needed} -- (see 21.7)

Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:'"'H| char8:"" | charl16:"" |

char32:"")) -- (see 21.10.2)

22.7.1.4 The purpose of this specification is to determine encoder and decoder actions to ensure that a decoder can
correctly determine the end of the encoding space occupied by a repetition.
NOTE — An actual repetition encoding does not necessarily fill the entire encoding space, and recovery of the repetition encoding
by a decoder will in general also require actions specified for value padding and justification (see 22.8)

22.7.1.5 The meaning of the encoding properties of type "Unit", "Encodi ngSpaceSize", and
"RepetitionSpaceDet er m nati on" were given in 21.1, 21.2 and 21.7. Together these specify the way in which the
end of the encoding space for repetitions is determined.
NOTE - If the ECN specifier requires that a length determinant is to be included, the value "vari abl e- wi t h- det er mi nant "
of "SI ZE" can be specified even if the repetition space is fixed size.

22.7.1.6 The "USI NG' specification is a reference to an auxiliary field or to a field carrying abstract values, or to a
container, depending on the value of "DETERM NED BY".

22.7.2 Specification constraints

22.7.2.1 If "SI ZE" is "vari abl e-wi t h-det er mi nant " and "DETERM NED BY" is not present, then the default value
("field-to-be-set")is assumed.

22.7.2.2 "USI NG' shall be specified if and only if "SI ZE" is "vari abl e- wi t h- det er mi nant " and "DETERM NED BY"
is "fiel d-to-be-set"or"fiel d-to-be-used" or "f| ag-t o- be-set " or "f | ag-t o- be- used", or "cont ai ner".

22.7.2.3 "ENCODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"field-to-be-set" or "flag-to-be-set". The first transform shall have a source which is integer if the
"DETERM NED BY" is "fi el d-t o- be- set " and which is boolean if the "DETERM NED BY" is "f | ag-t o- be-set". The
last transform shall have a result which can be encoded by the class of the field referenced by "USI NG'.

22.7.2.4 1t is an ECN specification or application error if any transform in the "ENCODER-TRANSFORMS" is not
reversible for the abstract value to which it is applied.

22.7.2.5 "DECODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to "fi el d-to-be-used" or
"f| ag-t o- be- used". The first transform shall have a source which is the same as the category of the field referenced
by "USI NG'. The last transform shall have a result which is integer if the "DETERM NED BY" is "fi el d-t o- be- used"
and which is boolean if the "DETERM NED BY" is "f | ag-t o- be- used".

22.7.2.6 The "USI NG' encoding property, if present, for a "fi el d-t o- be-set" or a "fi el d-t 0- be- used" shall be a
reference to a field that is present in the encoding earlier than the field being encoded. It is an application or an ECN

76 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

specification error if, in an instance of encoding, the repetition being encoded is present but the field referenced by the
"USI NG' encoding property is absent (through the exercise of optionality).

22.7.2.7 The "USI NG' encoding property, if present, for a "f| ag-to-be-set" or a "f| ag-t o- be- used" shall be a
reference to a field that is present in the repeated element of a repetition. It is an application or an ECN specification
error if, in an instance of encoding, the field referenced by the "USI NG' encoding property is absent (through the
exercise of optionality) from any of the repeated elements.
NOTE — The requirement that the referenced field be present in an element of the repetition is satisfied if it is an identifier that is
visible in accordance with 17.5 (encode structure), 19.3 (mapping by matching fields), 19.6 (mapping by value distribution), or if
it is textually present in the definition of a replacement structure when "REPLACE COMPONENT" is used by an encoding object
of a class in the repetition category.
22.7.2.8 If "DETERM NED BY" is "cont ai ner ", the "USI NG' reference shall be to a concatenation or to a repetition (or
to a bitstring or octetstring with a contained type) in which the repetition being encoded is a component (or a component
of a component, to any depth). It is an application or an ECN specification error if, in an instance of encoding, later
elements within the same concatenation or repetition are to be encoded.

22.7.2.9 "HANDLE" shall be specified only if "SI ZE" is "vari abl e-wi t h-det er mi nant " and "DETERM NED BY" is
"handl e".

22.7.2.10 If "HANDLE" is specified, then the repeated element, together with any element which (through the use of
optionality) may follow the repeated element shall all be encoded by encoding objects whose specification exhibits an
identification handle with the same name as "HANDLE". The value of the identification handle in the repeating element
shall be different from that of any possible following element.
NOTE - It is a requirement that an identification handle shall have the same value for all abstract values encoded by an encoding
object exhibiting that identification handle (see 22.9.2.2).
22.7.2.11 "PATTERN" shall be specified only if "SI ZE" is "variable-with-determinant” and "DETERM NED BY" is
"pattern".

22.7.2.12 "PATTERN" shall not be the initial sub-string of the encoding of any value of the repeated element.
NOTE — There is no prohibition on the occurrence of "PATTERN' within an encoding of the repeated element other than at its
start.

22.7.2.13 This specification is considered set if the "REPETI TI ON- SPACE" keyword is used, and it is mandatory for it to
be set in all places in the defined syntax where it is allowed. Defaulting all other parts of this defined syntax (e.g., use of
"REPETI TI ON- SPACE" alone) would not satisfy the above constraints.

22.7.3 Encoder actions
22.7.3.1 Encoders shall not generate encodings if the conditions of 22.7.2 are not satisfied.

22.7.3.2 If "SI ZE" is a positive value, then the encoding space is that multiple of "MULTI PLE OF" units. If "MULTI PLE
OF" is repetitions, then the encoder shall cease encoding if the abstract value to be encoded is not "SIZE" repetitions,
diagnosing a specification or application error.

22.7.3.3 If "SI ZE" is not set to a positive value, then the encoder shall determine the size "s" of the repetition space in
"MULTI PLE OF" units from the value encoding specification. This determination is specified in the subclauses on value
encoding specification.

22.7.3.4 If "SI ZE" is "encoder - opt i on- wi t h- det er mi nant " then the encoder (as an encoder's option) may increase
the size "s" (as determined in 22.7.3.3) in "MULTI PLE OF" units from that determined from the value encoding
specification to any value which can be encoded in the associated determinant.

22.7.3.5 If "SI ZE" is "f i xed-t o- max" or to "sel f - del i mi ti ng- val ues", then there is no further encoder action.

22.7.3.6 If "SI ZE" is "vari abl e-wi t h-det ernmi nant" and "DETERM NED BY" is "cont ai ner", then there is no
further encoder action.

22.7.3.7 If "DETERM NED BY" is "fi el d-to-be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMS" (if any) to the value "s" to produce a value that shall be encoded in the "USI NG' reference.

NOTE — The encoding of the "USI NG' reference in this case appears earlier in the encoding than the encoding of the repetition,
and an encoder will need to suspend the encoding of that field until the repetition to be encoded has been determined.

22.7.3.8 If "DETERM NED BY" is "fi el d-t o- be- used" then the encoder shall check that the value in the "USI NG'
reference when transformed by the "DECODER- TRANSFORMS" (if any) is equal to "s". It is an application error if this
condition is not met, and encoding shall not proceed.

ITU-T Rec. X.692 (03/2002) 77

ISO/IEC 8825-3:2003 (E)

22.7.3.9 If "DETERM NED BY" is "f| ag-t o- be-set", then the encoder shall apply (for each repeated element) the
transforms specified by "ENCODER- TRANSFORME" (if any) to a boolean value which is true for all elements except the
last and is false for the last element. The result of the "ENCODER- TRANSFORMS" shall be encoded in the "USI NG'
reference.

22.7.3.10 If "DETERM NED BY" is "f | ag- t 0- be- used" then the encoder shall check (for each repeated element) that the
value in the "USI NG' reference when transformed by the "DECODER- TRANSFORMB" (if any) is a boolean value which is
true for all elements except the last, and is false for the last element. It is an application error if this condition is not met,
and encoding shall not proceed.

22.7.3.11 If "DETERM NED BY" is "handle" there is no further action needed by the encoder.

22.7.3.12 If "DETERM NED BY" is "pat t ern", then the encoder shall check that the specified pattern is not an initial
substring of any of the encodings of the repeated element, and shall cease encoding if this check fails, diagnosing a
specification or application error. The encoder shall add the pattern "PATTERN' to the end of the encoding of the
repetition.

22.7.4 Decoder actions

22.7.4.1 If "SI ZE" is a positive value, then the decoder determines the encoding space as that multiple of "MULTI PLE
OF" units. If "MULTI PLE OF" is repetitions, then the actual end of the repetition space is determined by decoding and
counting repetitions.

22.7.4.2 If "SI ZE" is not set to a positive value, then the encoder shall determine the size "s" of the repetition space in
"MULTI PLE OF" units from the value encoding specification. This determination is specified in the subclauses on value
encoding specification.

22.7.4.3 If "SI ZE" is "vari abl e-wi t h- det er mi nant " and "DETERM NED BY" is set to "cont ai ner ", then the decoder
shall use the end of the container specified by "USI NG' as the end of the encoding space.

22,744 If "SI ZE" is "variable-with-deternminant" and "DETERM NED BY" is set to (or defaults to)
"field-to-be-set", then the decoder shall recover the value "s" by applying the reversal of the "ENCODER-
TRANSFORVE" (if any) to the value of the "USI NG' reference.

22.7.4.5 If "DETERM NED BY" is "fi el d-t o- be- used" then the decoder shall recover the value "s" by applying the
"DECCODER- TRANSFORMS" (if any) to the value of the "USI NG' reference.

22.7.4.6 If "DETERM NED BY" is "f| ag-t o- be- set ", then the decoder shall recover a boolean value by applying the
reversal of the "ENCODER- TRANSFORMS" (if any) to the value of the "USI NG' reference. The element is the last of the
repetition if and only if the boolean value is false.

22.7.4.7 If "DETERM NED BY" is "f | ag- t o- be- used" then the decoder shall recover a boolean value by applying the
"DECCODER- TRANSFORMS" (if any) to the value of the "USI NG' reference. The element is the last of the repetition if and
only if the boolean value is false.

22.7.4.8 If "DETERM NED BY" is "handl e", then the decoder shall determine the value of the identification handle and
attempt to decode the following element (in parallel) as either a further repetition or as a following element, using the
value of the identification handle to distinguish these alternatives. If decoding succeeds for more than one of these or
for none of these, it is an encoding or a specification error.

22.7.4.9 If "DETERM NED BY" is "pattern" then the decoder shall, at the start of decoding each repetition, check whether
"PATTERN" is present. If "PATTERN" is present, the bits of pattern shall be discarded, and the repetition terminated.

22.8 Value padding and justification

22.8.1 Encoding properties, syntax, and purpose

22.8.1.1 Value padding and justification uses the following encoding properties:

&val ue-justification Justification DEFAULT right:O,
&val ue- pr e- paddi ng Paddi ng DEFAULT zer o,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,
&val ue- post-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&unused- bi t s-det erm nati on UnusedBi t sDet erm nati on
DEFAULT fi el d-t o- be-set,
&unused- bi t s-ref erence REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -transforns #TRANSFORM ORDERED COPTI ONAL,
&Unused- bi t s- decoder -t ransf or s #TRANSFORM ORDERED OPTI ONAL

78 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

22.8.1.2 The syntax to be used for value padding and justification shall be:

[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi t s-det ermni nati on]
[USI NG &unused- bi t s-reference
[ENCODER- TRANSFORMS &Unused- bi t s- encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Unused- bi t s- decoder-transforns]]]]

22.8.1.3 The definition of types used in justification is:

Justification ::= CHO CE
{ left I NTEGER (0. . MAX),
right I NTEGER (0..NMAX)} -- (see 21.8)
Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option} -- (see 21.9)
Pattern ::= CHO CE
{bits BI T STRI NG
octets OCTET STRI NG
char 8 I A5String,
char 16 BMPSt ri ng,
char 32 Uni versal Stri ng,
any-of -1 ength I NTEGER (1..MAX),
di fferent ENUMERATED {any} }
Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:'"'"H| char8:"" | charl6:"" |
char32:"")) -- (see 21.10)
UnusedBi t sDet ermi nati on :: = ENUMERATED
{field-to-be-set, field-to-be-used, not-needed} -- (see 21.4)

22.8.1.4 The purpose of this specification is to determine the way in which an encoder places a value encoding in an
encoding space, and enables a decoder to determine the position of the value encoding.

22.8.1.5 The precise number of bits to be added by an encoder depends on both the encoding space specification and on
the value encoding specification, and is specified for each instance of value encoding.

22.8.1.6 "USI NG' is a reference that enables a decoder to determine the number of padding bits inserted. It is a reference
to an auxiliary field or to a field carrying abstract values, depending on "DETERM NED BY".

22.8.2 Specification restrictions

22.8.2.1 The number of bits specified in justification shall be less than or equal to the total number of padding bits "b"
(see below).

22.8.2.2 "USI NG' shall be specified if and only if "DETERM NED BY" is not "not-needed".

22.8.2.3 "ENCODER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to (or defaults to)
"fi el d-to- be-set". The first transform shall have a source which is integer and the last transform shall have a result
which can be encoded by the class of the field referenced by "USI NG'.

22.8.2.4 It is an ECN specification or application error if any transform in the "ENCODER- TRANSFORMS" is not reversible
for the abstract value to which it is applied.

22.8.2.5 "DECCDER- TRANSFORMS" shall be present only if "DETERM NED BY" is set to "fi el d-t o- be- used". The first
transform shall have a source which is the same as the category of the field referenced by "USI NG' which shall not be an
auxiliary field. The last transform shall have a result which is integer.

22.8.2.6 The "USI NG' encoding property, if present, shall be a reference to a field that is present in the encoding earlier
than the field being encoded. It is an application or an ECN specification error if, in an instance of encoding, the field
being encoded is present but the field referenced by the "USI NG' encoding property is absent (through the exercise of
optionality).

22.8.2.7 This specification is considered set if the "VALUE- PADDI NG' keyword is used. Actions if it is not set are
specified in all places where that syntax is permitted.

ITU-T Rec. X.692 (03/2002) 79

ISO/IEC 8825-3:2003 (E)

22.8.3 Encoder actions
22.8.3.1 Encoders shall not generate encodings if the conditions of 22.8.2 are not satisfied.

22.8.3.2 This specification is applied if and only if the encoding space or the repetition space encoding specification,
together with the value encoding specification, determine that there may be added padding bits around the value or
repetition encoding within the encoding or repetition space. Let the determined number of added padding bits in an
instance of encoding be "b" (where "b" is greater than or equal to 0).

22.8.3.3 If "JUSTI FI ED" is "ri ght: n", then "b"-"n" bits shall be added as pre-padding before the value or repetition
encoding, and "n" bits shall be added as post-padding after it.

22.8.3.4 If "JUSTIFIED" is "l eft: n", then "n" bits shall be added as pre-padding before the value or repetition
encoding, and "b"-"n" bits shall be added as post-padding after it.

22.8.3.5 The padding bits shall be set in accordance with the "PRE- PADDI NG' and "POST- PADDI NG' specifications, with
the leading bit of the pattern as the first inserted bit in each case.

22.8.3.6 If "DETERM NED BY" is "not-needed" then this completes the encoders actions.

22.8.3.7 If "DETERM NED BY" is "fi el d-to-be-set", then the encoder shall apply the transforms specified by
"ENCODER- TRANSFORMS" (if any) to the value "b" to produce a value that shall be encoded in the "USI NG' reference.

NOTE — The encoding of the "USI NG' reference in this case appears earlier in the encoding than the encoding of this field, and
an encoder will need to suspend the encoding of that field until the value to be encoded has been determined by the encoding of
this field.

22.8.3.8 If "DETERM NED BY" is "fi el d-t o- be- used" then the encoder shall check that the value in the "USI NG'
reference when transformed by the "DECODER- TRANSFORMS" (if any) is equal to "b". It is an application error if this
condition is not met, and encoding shall not proceed.

22.8.4 Decoder actions

22.8.4.1 If "DETERM NED BY" is "not - needed", then the decoder shall determine the value of "b" as determined by the
specification of value encoding and encoding space or repetition determination.

22.8.4.2 If "DETERM NED BY" is set to (or defaults to) "fi el d-t o- be- set ", then the decoder shall recover the value
"b" by applying the reversal of the "ENCODER- TRANSFORMS" (if any) to the value of the "USI NG' reference.

22.8.4.3 If "DETERM NED BY" is "fi el d-t o- be- used" then the decoder shall recover the value "b" by applying the
"DECODER- TRANSFORMS" (if any) to the value of that field.

22.8.4.4 The decoder shall use the "JUSTI FI ED" and the value of "b" to determine the position of the value encoding
within the encoding space, and shall ignore the value of all padding bits.

22.9 Identification handle specification

22.9.1 Encoding properties, syntax and purpose

22.9.1.1 Identification handle specification uses the following encoding properties:

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons I NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue Handl eVal ue DEFAULT tag: any

22.9.1.2 The syntax to be used for identification handle specification shall be:

[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]

22.9.1.3 The definition of the type used in identification handle specification is:

Handl eVal ue ::= CHO CE {
bits BIT STRI NG
octets OCTET STRI NG
nunmber I NTEGER (0. . MAX),
tag ENUVERATED {any}} -- (see 21.15)

22.9.1.4 This specification is used to identify that an encoding object exhibits an identification handle within all its
encodings (that is, for all possible abstract values that it encodes). The name of the identification handle is specified,
and the bits that are associated with that identification handle. The value of the identification handle is specified by
"Handl eVal ue".

80 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

22.9.1.5 The list of positions in "AT" shall be the positions of the bits forming the identification handle in the final
encoding, after any pre-alignment has been applied, and after any encoder bit-reversal actions have occurred, except
those bit-reversals that result from the specification of an encoding object in the #OUTER class.

NOTE — This means that a decoder needs to perform any bit-reversals specified in #OUTER for the entire PDU, but otherwise

examines the bit-positions and their values without any consideration of possible bit-reversals that may be specified for particular
encoding objects.

22.9.1.6 The list of positions in "AT" is a set of integer values (not necessarily contiguous, and not necessarily in
ascending order in the ECN specification). These positions shall be ordered by encoders and decoders from the zero
position (the first bit in that part of the encoding that is exhibiting the handle) upwards, and the bits in those positions
form a conceptual handle field.

22.9.1.7 For a "nunber " value of "Handl eVal ue" or the encoding of a tag number, the bit in the conceptual handle field
nearest to the zero position is the high-order bit, and the "nunber " or tag number that specifies the "Handl eVal ue" is
right-justified within this field. If the "nunber" or tag number is too large for the field, this is an ECN specification
error.

22.9.1.8 If the "bi tstring" or "oct et string" alternatives of "Handl eVal ue" are used, then their values shall have
the same number of bits as those specified for the identification handle by "AT". The bit in the conceptual handle field
nearest to the zero position is the leading bit of the "bi t st ri ng" or "oct et st ri ng" that specifies the "Handl eVal ue".

22.9.1.9 The "Handl eVal ue" shall not be specified as "t ag: any" unless the specification is for an encoding object of
the #TAG class. In this case the value of the identification handle is determined by either the tag number in the ECN
specification or by the tag number mapped from an ASN.1 tag (as specified in clause 19), and need not be specified
using "Handl eVal ue". If, however, a value is specified by "Handl eVal ue" and differs from that assigned in an ECN
specification of a tag class or in an ASN.1 tag that maps to an ECN tag, that is an ECN specification error.

22.9.2 Specification constraints

22.9.2.1 In any application of ECN, all identification handles with the same name shall specify the same set of bits for
the location of the identification handle.

NOTE - There is no general requirement that the value of the identification handle (exhibited by different encoding objects)
should be distinct, but distinct values are required when the identification handle is used to resolve optionality, alternative
selection, or repetition termination (see 21.5.7, 21.6.6 and 21.7.10).

22.9.2.2 The ECN specifier shall ensure that any encoding object exhibiting an identification handle produces the same
value of the identification handle for every abstract value that is encoded.

22.9.2.3 All encoding objects that exhibit the same identification handle shall either have no pre-alignment specification,
or shall align to the same pre-alignment unit.
NOTE - This restriction is imposed so that decoders can move to the alignment position before looking for the handle when the
decoding depends on a handle value.

22.9.2.4 If an encoding object for a class in the repetition category exhibits an identification handle, then that
identification handle shall also be exhibited (with the same value) by the encoding of the repeated element.

22.9.2.5 If an encoding object for a class in the alternatives category exhibits an identification handle, then that
identification handle shall also be exhibited by (the encoding of) all alternatives, and the value of the identification
handle shall be the same for all the alternatives.

NOTE - In this case that identification handle cannot be used for alternative determination in this alternative, and alternative
determination has either to be done using a different identification handle or by some other means.

22.9.2.6 If an encoding object for a class in the concatenation category exhibits an identification handle, then the first (if
any) encoded component (or, if it is tagged, the tag), taking account of optionality, shall exhibit that identification handle
with the same value.

22.9.2.7 This specification is considered set if the "EXHI Bl TS- HANDLE" keyword is used. If it is not set then there is no
identification handle exhibited.

22.9.3 Encoders actions

22.9.3.1 If an encoding object exhibits an identification handle, the encoder shall check that the encoding has the value
of the identification handle, and shall diagnose a specification or application error otherwise.

22.9.4 Decoders actions

22.9.4.1 There are no decoders actions directly resulting from the exhibition of an identification handle. Decoder
actions only result from use of the identification handle to determine optionality, end of repetitions, or choice of
alternatives.

ITU-T Rec. X.692 (03/2002) 81

ISO/IEC 8825-3:2003 (E)

22.10 Concatenation specification

22.10.1 Encoding properties, syntax and purpose

22.10.1.1 Concatenation specification uses the following encoding properties:

&concat enat i on- or der ENUVERATED {textual, tag, randont
DEFAULT textual,

&concat enat i on- al i gnment ENUMERATED { none, al i gned}
DEFAULT al i gned,

&concat enat i on- handl e Printabl eString

DEFAULT "def aul t - handl e"

22.10.1.2 The syntax to be used for concatenation specification shall be:

[CONCATENATI ON
[ORDER &concat enat i on- or der]
[ALI GNVENT &concat enat i on-al i gnrrent]
[HANDLE &concat enati on-handl e]]

22.10.1.3 This specification determines the order in which the components of an encoding class in the concatenation
category are encoded, the means an encoder uses to identify each component, and any pre-alignment padding that is to
be provided between components.

22.10.2 Specification constraints

22.10.2.1 If "ORDER" is "random", then "HANDLE" assumes the default value of "def aul t - handl e" if not set, and the
encoding all components shall exhibit "HANDLE" with distinct values for the identification handle.

22.10.2.2 If "ALI GNVENT" is "al i gned", then the pre-alignment specification assumes the default value unless set.

22.10.2.3 If a component has its own explicit pre-alignment, this is applied after any pre-alignment of the component
resulting from the setting of "ALI GNMVENT" in the encoding class of the concatenation category.
NOTE - The equivalent function is not provided for repetitions, as it can be achieved more simply by pre-alignment of the single
component.

22.10.2.4 If "ORDER" is "t ag", then every component shall start with an encoding class in the tag category. The tag
number associated with this class is called the component-tag.

22.10.2.5 The component-tags of each alternative shall be distinct.

22.10.2.6 This specification is considered set if the "CONCATENATI ON" keyword is used. If it is not set then encoders and
decoders act as if it was set with each encoding property taking its default value.

22.10.2.7 If (through the exercise of optionality) there is at least one abstract value of a concatenation that has no bits in
its encoding, then the concatenation shall have no pre-alignment.

NOTE — This subclause will apply if a concatenation has no mandatory components, or if all its mandatory components can have
(through the exercise of optionality) no bits in their encodings.

22.10.3 Encoder actions

22.10.3.1If "ORDER" is "t ext ual ", the textual order in the ASN.1 type specification or the ECN structure definition
shall be used.

22.10.3.2 If "ORDER" is "t ag", then the order shall be that of the tag numbers in the component-tags (lowest tag number
first).

22.10.3.3 If "ORDER"is "r andond', then the encoder shall determine the order of concatenation without constraint.
22.10.3.4 If "ALI GNVENT" is "none", the encoder shall juxtapose the encodings of components with no inserted bits.

22.10.3.5If "ALI GNMENT" is "al i gned", then the encoder shall apply the pre-alignment specification of the class in the
concatenation category before encoding each component, except that a pre-alignment specification of "ALI GNED TO
ANY" shall be interpreted as a specification of "ALI GNED TO NEXT" (see 22.2).

NOTE 1 — This is because there can only be a single start pointer for "ALI GNED TO ANY".
NOTE 2 — Any pre-alignment specified for a component (including "ALI GNED TO ANY") is applied after the above actions.

82 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

22.10.4 Decoder actions

22.10.4.1 When decoding a component, a decoder shall first perform the decoder actions associated with the pre-
alignment specification for "ALI GNVENT" if it is set to "al i gned", treating "ALI GNED TO ANY" as "ALI GNED TO NEXT"
(see 22.2). If "ALI GNIVENT" is set to "none", then the decoder shall proceed directly to decoding the component.

22.10.4.2 The decoder shall determine the order of the components from the defined order for the encoder if "ORDER" is
"textual "or "tag".

22.10.4.3 If "ORDER" is "random", the decoder shall determine the order of the components by examining the value of
the bits associated with "HANDLE".

22.10.4.4 Each component has a distinct value for the bits associated with "HANDLE" that enables the component to be
identified. Decoding shall proceed until an abstract value for every component has been obtained, and a decoder shall
diagnose an encoder's error if more than one encoding is identified for a component, or if unexpected values appear for
identification handles during the decoding.

NOTE — Unexpected values can occur as part of extensibility provision, but this is not supported in this version of this
Recommendation | International Standard, and such occurrences shall be treated as encoder errors.

22.11 Contained type encoding specification

22.11.1 Encoding properties, syntax and purpose

22.11.1.1 The contained type encoding specification uses the following encoding properties:

&Pri mar y- encodi ng- obj ect - set #ENCCODI NGS OPTI ONAL,
&Secondar y- encodi ng- obj ect - set #ENCCDI NGS OPTI ONAL,
&over - ri de- encoded- by BOOLEAN DEFAULT FALSE

22.11.1.2 The syntax to be used for contained type encoding specification shall be:

[CONTENTS- ENCODI NG &Pr i mar y- encodi ng- obj ect - set
[COWPLETED BY &Secondar y- encodi ng- obj ect - set]
[OVERRI DE &over - ri de- encoded- by]]

22.11.1.3 The purpose of this specification is to determine the encoding of a contained type, and whether an ASN.1
ENCCDED BY contents constraint associated with that contained type shall be overridden.

22.11.1.4 This specification provides either one or two encoding object sets. If two are provided, they are combined
according to clause 13.2 to produce a combined encoding object set.

22.11.1.5 This specification is considered set if the "CONTENTS- ENCODI NG' keyword is used.

22.11.2 Encoder actions

22.11.2.11f "CONTENTS- ENCCDI NG' is not set, then a contained type shall be encoded using the combined encoding
object set applied to the container if ENCODED BY is not present in the ASN.1 contents constraint, otherwise with the
encoding rules specified by the ENCODED BY statement.

22.11.2.2 If "CONTENTS- ENCODI NG' is set, the combined encoding object set formed from "COVMPLETED BY" shall be
applied to the contained type if ENCODED BY is not present in the ASN.1 contents constraint, or if ENCODED BY is
present and "OVERRI DE" is TRUE. Otherwise the combined encoding set applied to the containing type shall be applied
to the contained type.

22.11.3 Decoder actions

22.11.3.1A decoder shall decode the contained type in accordance with the encoding applied by the encoder, as specified
above.
22.12 Bit reversal specification

22.12.1 Encoding properties, syntax, and purpose

22.12.1.1 Bit reversal specification uses the following encoding property:

&bi t -reversal Rever sal Speci fication
DEFAULT no-rever sal

22.12.1.2 The syntax to be used for bit reversal specification shall be:

ITU-T Rec. X.692 (03/2002) 83

ISO/IEC 8825-3:2003 (E)

[BI T- REVERSAL &bit-reversal]

22.12.1.3 The definition of types used in this group is:

Rever sal Speci fication ::= ENUVERATED
{no-reversal,
reverse-bits-in-units,
reverse-hal f-units,
reverse-bits-in-hal f-units} -- (see 21.13)

22.12.1.4 The purpose of this specification is to enable the order of bits in the final encoding to be different from those
bits generated as part of an encoding-space or repetition-space, or in the complete encoding of a PDU (see clause 25).

NOTE 1 — Bit reversal can be specified for individual bit-field encodings and also for the results of concatenation or repetition.
Care should be taken to ensure that one reversal does not negate the other.

NOTE 2 — Bit reversal applies to the contents of an encoding space or repetition space (including any value pre-padding or
post-padding), but does not apply to any pre-alignment padding.

22.12.2 Specification constraints

22.12.2.1 This specification is only available when an encoding space or repetition space encoding is required, and
within #0UTER.

22.12.2.2"BI T- REVERSAL" shall not be '"reverse-half-units" or "reverse-bits-in-half-units" unless
"MULTI PLE OF" is set to an even number of bits for the encoding space or repetition space or #OUTER reversal. (This
requirement means that a value of "repetitions" for "MULTI PLE OF" is not allowed in this case.)

22.12.2.3 "Bl T- REVERSAL" shall not be set unless "MJLTI PLE- OF" is repetitions or is greater than one bit.

22.12.2.4 This specification is considered set if the "Bl T- REVERSAL" keyword is used. If it is not set then encoders and
decoders act as if it was set with the encoding property taking its default value.

22.12.3 Encoder actions

22.12.3.1 Except when performing #OUTER actions, an encoder shall divide the contents of the encoding space or
repetitions space into "MJULTI PLE OF" units unless "MULTIPLE OF" is "repetitions". If "MULTIPLE OF" is
"repetitions", then the entire encoding space shall be treated as a single unit. When performing bit-reversal for
#OUTER, the entire encoding (after any "PADDI NG' has been applied) shall be divided into "MULTI PLE OF" units. It is an
ECN specification error if the entire encoding is not an integral multiple of "MULTI PLE OF" units.

22.12.3.2 The encoder shall do no reversal (the default value), or shall reverse the bits in each unit, or shall reverse the
half-units (without changing the order of bits in each half-unit) or shall reverse the bits within each half-unit, as
specified by the value of "Bl T- REVERSAL".

22.12.4 Decoder actions

22.12.4.1 The decoder shall first determine (see encoding space and repetition space specification) the end of the
encoding space or repetition space or (for bit-reversal specification within #0UTER) the end of the entire encoding, and
shall then perform the reversal actions specified for the encoder before continuing with decoding.

NOTE — Performing the same reversals will recover the original bit-order.

23 Defined syntax specification for bit-field and constructor classes

This clause provides the full syntax for defining encoding objects of each encoding class in the different categories.

NOTE — Encoder and decoder actions are specified in the following clauses as conditional on an encoding property group being
set. A group is set if and only if the initial keyword of the group is present in the specification of the encoding object.

23.1 Defining encoding objects for classes in the alternatives category

23.1.1 The defined syntax

The syntax for defining encoding objects for classes in the alternatives category is defined as:
#ALTERNATI VES : : = ENCODI NG CLASS {
-- Structure or conponent replacenment specification (see 22.1)
&#Repl acenent - structure

OPTI ONAL,
&r epl acenent - struct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,

84 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)
&#tHead- end-structure OPTI ONAL,

-- Pre-alignnment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start - poi nter REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transfornms #TRANSFORM ORDERED OPTI ONAL,

-- Alternative determnation (see 22.6)

&al t ernati ve-det erm nation Al ternativeDeterm nation
DEFAULT fi el d-t o-be-set,
&al ternati ve-reference REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&handl e-i d Printabl eString
DEFAULT "def aul t - handl e",
&al ternative-ordering ENUVERATED {textual, tag}

DEFAULT t ext ual ,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue Handl eVal ue DEFAULT t ag: any
} WTH SYNTAX {
[REPLACE
[STRUCTURE]
[COVPONENT]

[ALL COVPONENTS]
W TH &Repl acenent - struct ure
[ENCODED BY &r epl acenent - struct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer

[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nter-encoder -transforns]]
ALTERNATI VE

[DETERM NED BY &al ternati ve-determ nation
[HANDLE &handl e-i d]]
[USI NG &al ternative-reference
[ORDER &al t ernati ve-ordering]
[ENCODER- TRANSFORMS &Encoder -t r ansf or nms]
[DECODER- TRANSFORMS &Decoder -t r ansf or ms] |
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi ti ons
[AS &handl e-val ue]]

}

23.1.2 Purpose and restrictions

23.1.2.1 This syntax is used to define the start of the encoding space for an encoding class in the alternatives category,
the determination of the alternative that has been encoded, and an optional declaration that all encodings exhibit a
specified identification handle (with distinct identification handle values).

23.1.2.2 If "REPLACE STRUCTURE" is set, then no other encoding property groups shall be set.

23.1.2.3 Encodings of this class do not exhibit an identification handle unless "EXHI BI TS HANDLE" is set (even if all
components exhibit an identification handle, that may or may not be the same).

23.1.2.4 If "EXHI BI TS HANDLE" is set, then encodings of all the alternatives of this class are required to exhibit the
defined identification handle, and to have distinct values for that identification handle.

ITU-T Rec. X.692 (03/2002) 85

ISO/IEC 8825-3:2003 (E)

NOTE - This would normally require that every component had an "EXHI Bl TS HANDLE" set to the same value, unless a head-
end insertion exhibited the identification handle (see 9.10.3).

23.1.3 Encoder actions

23.1.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.
c) Start pointer.

d) Alternative determination.

e) Identification handle .

23.1.4 Decoder actions

23.1.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.

¢) Alternative determination.

23.2 Defining encoding objects for classes in the bitstring category

23.2.1 The defined syntax

The syntax for defining encoding objects for classes in the bitstring category is defined as:
#BI TS :: = ENCODI NG CLASS {

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start - poi nter REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transfornms #TRANSFORM ORDERED OPTI ONAL,

-- Bits val ue encoding

&val ue-reversal BOOLEAN DEFAULT FALSE,

&Tr ansf orns #TRANSFORM ORDERED OPTI ONAL,

&Bi ts-repetition-encodings #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&bits-repetition-encoding #CONDI TI ONAL- REPETI TI ON OPTI ONAL,
-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,

&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,

&handl e-val ue Handl eVal ue DEFAULT tag: any,

-- Contai ned type encoding specification (see 22.11)

&Pri mar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,

&Secondar y- encodi ng- obj ect - set #ENCCODI NGS OPTI ONAL,

&over -ri de- encoded- by BOOLEAN DEFAULT FALSE

} WTH SYNTAX {

[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-alignnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start - poi nter
[MULTI PLE OF &start-pointer-unit]

86 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

[ENCODER- TRANSFORVS &St art - poi nt er-encoder -transforns]]

[VALUE- REVERSAL &val ue-reversal]

[TRANSFORVS &Tr ansf or ms]

[REPETI TI ON- ENCCDI NGS &Bi t s-repetition-encodi ngs]
[REPETI TI ON- ENCODI NG &bi ts-repetition-encodi ng]

[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]
[CONTENTS- ENCODI NG &Pr i mar y- encodi ng- obj ect - set
[COWPLETED BY &Secondary-encodi ng- obj ect - set]
[OVERRI DE &over -ri de- encoded- by]]

}

23.2.2 Model for the encoding of classes in the bitstring category

23.2.2.1 The model of bits encodings is:
a) The order of bits in the bitstring can be reversed.
b) The bits are then considered as a repetition of bit.
¢) There is an optional transform (specified by "TRANSFORMS") in which each bit is transformed into a (self-
delimiting) bitstring.
d) Either "REPETI TI ON- ENCODI NG' or "REPETI TI ON- ENCODI NGS" specify how the repetition of the
sequences of bits (or of the original bits, if "TRANSFORVE" is not set) are to be encoded.

NOTE - The sole purpose of allowing "REPETITION-ENCODING' as well as
"REPETI TI ON- ENCODI NGS" is to provide a syntax that does not contain a double curly-bracket ("{{") in the
common case of a single conditional encoding. Use of "REPETI TI ON- ENCODI NGS" when there is a single
conditional encoding is deprecated but is allowed.

23.2.2.2 Bounds (if present) on the class being encoded (a class in the bitstring category) are bounds on the number of
bits in the bitstring forming each abstract value.

23.2.2.3 When considered as a repetition of a bit, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #CONDI TI ONAL- REPETI Tl ON that are
used in the specification of this encoding object.

23.2.3 Purpose and restrictions

23.2.3.1 This syntax is used to define the start of the encoding space for a class in the bitstring category, the encoding of
the abstract values of that class, an optional declaration that all bits encodings exhibit a specified identification handle,
and a specification of how to encode a contained type.

23.2.3.2 The #CONDI TI ONAL- REPETI TI ON that is applied by this encoding object shall not specify "REPLACE" unless it
is "REPLACE STRUCTURE".

23.2.3.3 If any of the #CONDI TI ONAL- REPETI Tl ON encoding objects contain a "REPLACE STRUCTURE" clause, then all
of the #CONDI Tl ONAL- REPETI Tl ON encoding objects shall contain a "REPLACE STRUCTURE" clause.

23.2.3.4 If there is a "REPLACE STRUCTURE" clause in the #CONDI TI ONAL- REPETI TI ON encoding objects, then no
other parameters shall be set.

23.2.3.5 The first transform in "TRANSFORMS" (if any) shall have a source that is a single bit and the last transform shall

have a result that is bitstring. The bitstrings produced for a one-bit and for a zero-bit shall form a self-delimiting set (see
3.2.41).

NOTE — This means that the final transform is required to be self-delimiting.

23.2.3.6 It is an ECN specification or application error if any transform in the "TRANSFORMS" is not reversible for the
abstract value to which it is applied.

23.2.3.7 Exactly one of "REPETI TI ON- ENCODI NG' and "REPETI TI ON- ENCODI NGS" shall be set.

23.2.3.8 If an encoding object in the "REPETI TI ON- ENCODI NGS" ordered list is defined using "I F", then all preceding
encoding objects in that list shall be defined using "I F".

23.2.3.9 If "DETERM NED BY" is "not-needed" in one or more of the "REPETI TI ON- ENCODI NQ(S)" specifications, then
the abstract values of the original bitstring to which that encoding object is applied shall be constrained to a finite self-
delimiting set that can be identified from the ECN specification.

NOTE — This would be the case if the bitstring values resulted from a Huffman-style encoding (see Annex E) specified by
mapping integer values to bits (see 19.7), or if the bitstring values had an ECN-visible bound restricting them to a fixed number of
bits.

ITU-T Rec. X.692 (03/2002) 87

ISO/IEC 8825-3:2003 (E)

23.2.3.10 If "EXHI BI TS HANDLE" is set, then all encodings of values associated with this class shall exhibit the specified
identification handle.

NOTE - This will in general require restrictions on the abstract values of the associated type or the addition of redundant bits in
the transform into bits, or both.

23.2.3.11 If "EXH BI TS HANDLE" is set, then "ALI GNED TO' shall not be set in any of the "REPETI TI ON- ENCODI NG(S)"
specifications.

23.2.4 Encoder actions

23.2.4.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.
¢) Bits value encoding (see 23.2.4.2).
d) Identification handle.
e) Contained type encoding.
23.2.4.2 For bits value encoding, the encoder shall:
a) Reverse the order of bits in the entire bitstring abstract value if "VALUE- REVERSAL" is set to TRUE;
b) Treat the bitstring value as a repetition of a bit;
c) Apply the specified "TRANSFORVS" (if any) to each bit to produce a repetition of bits;
d) Encode the repetition by applying the first "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.

23.2.4.3 It is an ECN specification error if there is no "REPETI TI ON- ENCODI N&(S)" whose condition is satisfied.

23.2.5 Decoder actions

23.2.5.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

¢) Bits value decoding (see 23.2.5.2).
d) Contained type decoding.

23.2.5.2 For bits value decoding, the decoder shall use the "REPETI TI ON- ENCODI N&(S) " to determine the repetition
space and to recover the original bit order using the "Bl T- REVERSAL" specification.

23.2.5.3 If "TRANSFORMS" is set, then the decoder shall use the self-delimiting property of the encoding of each bit to
determine the end of each repetition, and shall reverse the transforms to recover the original bitstring value.

23.2.5.4 If "VALUE- REVERSAL" is set to TRUE, then the final order of the bits in the bitstring abstract value shall be
reversed.

23.3 Defining encoding objects for classes in the boolean category

23.3.1 The defined syntax

The syntax for defining encoding objects for classes in the boolean category is defined as:
#BOOL :: = ENCODI NG CLASS ({

-- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure
OPTI ONAL,
&r epl acenent - struct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space- pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0' B,

-- Start pointer specification (see 22.3)

88 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

&start-pointer REFERENCE OPTI ONAL,
&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space-si ze Encodi ngSpaceSi ze

DEFAULT sel f-delimting-val ues,
Unit (ALL EXCEPT repetitions)
DEFAULT bit,

Encodi ngSpaceDet er m nati on
DEFAULT fi el d-t o-be-set,
REFERENCE OPTI ONAL,

#TRANSFORM ORDERED OPTI ONAL,
#TRANSFORM ORDERED OPTI ONAL,

&encodi ng- space-uni t
&encodi ng- space- det erm nati on

&encodi ng- space-r ef erence
&Encoder -t ransf or s
&Decoder -t r ansf or ns

-- Bool ean val ue encodi ng
&val ue-true-pattern
&val ue-fal se-pattern

Pattern DEFAULT bits:'1'B,
Pattern DEFAULT bits:'0' B,

-- Val ue padding and justification
&val ue-justification

&val ue- pr e- paddi ng

&val ue-pre-pattern

&val ue- post - paddi ng

&val ue- post-pattern

&unused- bi t s-det erm nati on

(see 22.8)

Justification DEFAULT right:O,

Paddi ng DEFAULT zero,

Non- Nul | - Pattern DEFAULT bits:'0'B,
Paddi ng DEFAULT zero,

Non- Nul | - Pattern DEFAULT bits:'0'B,
UnusedBi t sDet erm nati on

DEFAULT fi el d-t o- be-set,

REFERENCE OPTI ONAL,

#TRANSFORM ORDERED OPTI ONAL,
#TRANSFORM ORDERED CPTI ONAL,

&unused- bi t s-reference
&Unused- bi t s- encoder -transforns
&Unused- bi t s- decoder -t ransf orns

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e
&Handl e- posi ti ons
&handl e- val ue

-- Bit reversal
&bi t -reversal

speci fication (see

Printabl eString OPTI ONAL,
I NTEGER (0..MAX) OPTI ONAL,
Handl eVal ue DEFAULT t ag: any,

22.12)
Rever sal Speci fication

DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nter-encoder -transforns]]
ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t r ansf or ns] |
[TRUE- PATTERN &val ue-true-pattern]
[FALSE- PATTERN &val ue-fal se-pattern]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bit s-det erni nati on]
[USI NG &unused- bi t s-reference

ITU-T Reec. X.692 (03/2002) 89

ISO/IEC 8825-3:2003 (E)

[ENCODER- TRANSFORVS &Unused- bi t s- encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]
[Bl T- REVERSAL &bit-reversal]

}

23.3.2 Purpose and restrictions

23.3.2.1 This syntax is used to define the start of the encoding space for a class in the boolean category, the encoding of
the abstract values of that class, their positioning within the encoding space, an optional declaration that all bits
encodings exhibit a specified identification handle, and possible bit-reversal of the encoding space for the boolean.

23.3.2.2 If "REPLACE" is set, then no other encoding property groups shall be set.
23.3.2.3 At most one of "TRUE- PATTERN" and "FALSE- PATTERN'" shall be set to "di f f erent : any".

23.3.2.4 If the alternative "any- of -1 engt h" is selected for either pattern (or both), then the length in bits of the two
patterns shall be different.

23.3.2.5 If "ENCODI NG SPACE SI ZE" is "sel f-delimting", then "TRUE- PATTERN' and "FALSE- PATTERN" shall
form a self-delimiting set (see 3.2.41).

23.3.2.6 "UNUSED BI TS DETERM NED BY" shall not be "not - needed" unless:

a) Both patterns are integral multiples of "ENCODI NG SPACE MULTI PLE OF" units and "ENCODI NG SPACE
Sl ZE" is "vari abl e-wi t h-det er mi nant"; or

b) Both patterns are the same length; or
c) "JUSTIFIED"is "l ef t " and the patterns form a self-delimiting set; or
d) "JUSTIFIED"is "ri ght" and the reverse of the patterns form a self-delimiting set (see 3.2.41).

23.3.2.7 If there are any unused bits in the encoding space, then "VALUE- PADDI NG' shall be set.

23.3.3 Encoder actions

23.3.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

c) Start pointer.

d) Encoding space (see 23.3.3.2).
e) Value encoding (see 23.3.3.3).
f) Value padding and justification.
g) Identification handle.

h) Bitreversal.

23.3.3.2 If "ENCODI NG SPACE SI ZE" is not set to a positive value, then the encoding space size "s" is the smallest
number of "MULTI PLE OF" units (subject to 23.3.3.3) that can accommodate the pattern of the value that is to be
encoded.

23.3.3.3 An encoder (as an encoder's option) may increase the encoding space size "s" (as determined in 23.3.3.2) in
"MULTI PLE OF" units (subject to any restrictions that the range of values of any "fiel d-to-be-set" or
"fi el d-t o- be- used" imposes) if the "ENCODING-SPACE SIZE" is set to "encoder-option-with-determinant".

23.3.3.4 The number of unused bits can be determined from the value "s" and from the pattern of the value to be
encoded.

23.3.3.5 If the number of unused bits is non-zero, then "VALUE- PADDI NG' shall be applied.

23.3.4 Decoder actions

23.3.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

90 ITU-T Rec. X.692 (03/2002)

b)
¢)
d)
e)
f)

ISO/IEC 8825-3:2003 (E)

Start pointer.

Encoding space.

Bit reversal.

Value padding and justification.
Value decoding (see 23.3.4.2).

23.3.4.2 Value decoding shall be performed by identifying the "TRUE- PATTERN" or the "FALSE- PATTERN'" by:

a)
b)

Using an "UNUSED Bl TS" determination, if any; or

Using the self-delimiting property of the patterns or their reversals.

23.4 Defining encoding objects for classes in the characterstring category

23.4.1 The defined syntax

The syntax for defining encoding objects for classes in the characterstring category is defined as:

#CHARS :: = ENCCODI NG CLASS {

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start - poi nter REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transfornms #TRANSFORM ORDERED OPTI ONAL,

-- Chars val ue encodi ng

&val ue-reversal BOOLEAN DEFAULT FALSE,
&Tr ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Char s-repetiti on-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&char s-repetition-encodi ng #CONDI TI ONAL- REPETI TI ON OPTI ONAL,
-- ldentification handl e specification (see 22.9)
&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e-val ue Handl eVal ue DEFAULT tag: any
} WTH SYNTAX {
[ALI GNED TO
[NEXT]
[ANY]

}

&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start - poi nter

[MULTI PLE OF &start-pointer-unit]

[ENCODER- TRANSFORMS &St art - poi nt er - encoder -t ransf or nms] |
[VALUE- REVERSAL &val ue-reversal]
[TRANSFORVS &Tr ansf or ns]

[REPETI TI ON- ENCODI NGS ~ &Char s-repeti ti on-encodi ngs]

[REPETI TI ON- ENCODI NG &chars-repetition-encodi ng]

[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]

23.4.2 Model for the encoding of classes in the characterstring category

23.4.2.1 The model of characterstring encodings is:

a)

The order of characters in the character string can be reversed.

b) The chars are considered as a repetition of a char.

©)

There is a transform (specified by "TRANSFORMS") in which each character is transformed into a self-
delimiting bitstring.

ITU-T Rec. X.692 (03/2002) 91

ISO/IEC 8825-3:2003 (E)

d) Either "REPETI TI ON- ENCODI NG' or "REPETI TI ON- ENCODI NGS" specify how the repetition of bitstring is
to be encoded.

NOTE -~ The sole purpose of allowing "REPETITI ON-ENCCDING' as well as
"REPETI TI ON- ENCODI NGS" is to provide a syntax that does not contain a double curly-bracket ("{{") in the
common case of a single conditional encoding. Use of "REPETI TI ON- ENCODI NGS" when there is a single
conditional encoding is deprecated but is allowed.

23.4.2.2 Bounds (if present) on the class being encoded (a class in the characterstring category) are bounds on the
number of chars in the character string forming each abstract value.

23.4.2.3 When considered as a repetition of chars, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #REPETI TI ON- ENCODI NG that are used
in the specification of this encoding object.

23.4.3 Purpose and restrictions

23.4.3.1 This syntax is used to define the start of the encoding space for a class in the characterstring category, the
encoding of the abstract values associated with that class, an optional declaration that all chars encodings exhibit a
specified identification handle.

23.4.3.2 The #CONDI TI ONAL- REPETI Tl ON that is applied by this encoding object shall not specify "REPLACE" unless it
is "REPLACE STRUCTURE".

23.4.3.3 If any of the #CONDI TI ONAL- REPETI Tl ON encoding objects contain a "REPLACE STRUCTURE" clause, then all
of the #CONDI TI ONAL- REPETI Tl ON encoding objects shall contain a "REPLACE STRUCTURE" clause.

23.4.3.4 If there is no "REPLACE STRUCTURE" clause in the #CONDI TI ONAL- REPETI TI ON encoding objects, then
"TRANSFORME" shall be set. If there is a "REPLACE STRUCTURE" clause in the #CONDI TI ONAL- REPETI Tl ON encoding
objects, then no other parameters shall be set.

23.4.3.5 The first transform of "TRANSFORMB" shall have a source that is a single character and the last transform shall
have a result that is bitstring. The bitstrings produced for the set of all characters to be encoded shall form a self-
delimiting set (see 3.2.41).

NOTE — This means that the final transform is required to be self-delimiting.

23.4.3.6 It is an ECN specification or application error if any transform in the "TRANSFORMS" is not reversible for the
abstract value to which it is applied.

23.4.3.7 Exactly one of "REPETI TI ON- ENCODI NG' and "REPETI TI ON- ENCODI NGS" shall be set.

23.4.3.8 If an encoding object in the "REPETI TI ON- ENCODI NGS" ordered list is defined using "I F", then all preceding
encoding objects in that list shall be defined using "I F".

23.4.3.9 If "EXHI BI TS HANDLE" is set, then all encodings of values associated with this class shall exhibit the specified
identification handle.

NOTE - This will in general require restrictions on the abstract values of the associated type, or the inclusion of redundant bits in
the encoding of each character, or both.

23.4.3.10 If "EXH BI TS HANDLE" is set, then "ALI GNED TO' shall not be set in any of the "REPETI TI ON- ENCODI N&(S)"
specifications.

23.4.4 Encoder actions

23.4.4.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

¢) Chars value encoding (see 23.4.4.3).

d) Repetition encoding as specified by the first "REPETI TI ON- ENCCDI NG&(S)" whose condition is satisfied.
e) Identification handle specification.

23.4.4.2 1t is an ECN specification error if there is no "REPETI TI ON- ENCODI N&(S)" whose condition is satisfied.

23.4.4.3 For characterstring value encoding, the encoder shall:

a) Reverse the order of characters in the entire character string abstract value if "VALUE- REVERSAL" is set to
TRUE;

b) Treat the characterstring value of chars as a repetition of char;

92 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

c) Apply the specified "TRANSFORVE" (if any) to each char to produce a repetition of bits;
d) Encode the repetition by applying the "REPETI TI ON- ENCODI NG&(S)".

23.4.5 Decoder actions

23.4.5.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

¢) Repetition decoding as specified by the first "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.
d) Characterstring value decoding (see 23.4.5.2).

23.4.5.2 For characterstring value decoding, the decoder shall use the "REPETI TI ON- ENCODI N&(S)" to determine the
repetition space and to recover the original characters. If "TRANSFORMS" is set, then the decoder shall use the self-
delimiting (which includes a possible fixed length) property of the encoding of each character to determine the end of
each repetition, and shall reverse the transforms to recover a characterstring value.

23.4.5.3 If "VALUE- REVERSAL" is set to TRUE, then the final order of the characters in the characterstring abstract value
shall be reversed.
23.5 Defining encoding objects for classes in the concatenation category

23.5.1 The defined syntax

The syntax for defining encoding objects for classes in the concatenation category is defined as:
#CONCATENATI ON : : = ENCCDI NG CLASS {

-- Full replacenent specification (see 22.1)
&#Repl acenent - structure

OPTI ONAL,
&#Repl acenent - st ruct ure2

OPTI ONAL,
&r epl acenent - st ruct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect 2 &*#Repl acenent -structure2 OPTI ONAL,
&#Head- end- structure OPTI ONAL,
&#tHead- end- st ruct ure2 OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start - poi nter REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transfornms #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,

&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,

&encodi ng- space- det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT fi el d-to- be-set,

&encodi ng- space-ref erence REFERENCE OPTI ONAL,

&Encoder - tr ansf or ns #TRANSFORM ORDERED OPTI ONAL,

&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- Concatenation specification (see 22.10)

&concat enat i on- or der ENUVERATED {textual, tag, randon}
DEFAULT t extual ,

&concat enati on-al i gnnment ENUVERATED { none, al i gned}
DEFAULT al i gned,

&concat enat i on- handl e Printabl eString

DEFAULT "def aul t - handl e",

ITU-T Rec. X.692 (03/2002) 93

ISO/IEC 8825-3:2003 (E)

94

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right:O,
&val ue- pr e- paddi ng Paddi ng DEFAULT zer o,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,
&val ue- post-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&unused- bi t s-determ nation UnusedBi t sDet ermi nati on
DEFAULT fi el d-to- be-set,
&unused- bi t s-ref erence REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t ransf or ns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t ransforns #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi tions I NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue Handl eVal ue DEFAULT tag: any,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} W TH SYNTAX {

[REPLACE
[STRUCTURE]
[COVPONENT]
[ALL COVPONENTS]
[OPTI ONALS]
[NON- OPTI ONALS]
W TH &#Repl acenent - struct ure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]
[AND OPTI ONALS W TH &#Repl acenent - st ruct ur e2
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect 2
[I NSERT AT HEAD &#Head-end-structure2]]]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder -t ransf or ns]]
ENCODI NG- SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det er m nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMVS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMB &Decoder -t r ansf or ns] |
[CONCATENATI ON
[ORDER &concat enat i on- or der]
[ALI GNIVENT &concat enat i on-al i gnrent]
[HANDLE &concat enati on-handl e]]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi t s-det erm nati on]
[USI NG &unused- bi ts-reference
[ENCODER- TRANSFORMS &Unused- bi t s- encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Unused- bi t s- decoder-transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]
[BI T- REVERSAL &bit-reversal]

ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)
}

23.5.2 Purpose and restrictions

23.5.2.1 This syntax is used to define the start of the encoding space for a class in the concatenation category, the way in
which the encodings of the components are to be combined, their positioning within the encoding space, an optional
declaration that all encodings exhibit a specified identification handle, and possible bit-reversal of the encoding space.

23.5.2.2 If "REPLACE STRUCTURE" is set, then no other encoding parameter groups shall be set.

23.5.2.3 "ENCODI NG SPACE SI ZE" shall be either "variabl e-with-determnant" or "self-delimting-
val ues".

23.5.2.4 If "EXH BI TS HANDLE" is set then the encoding of all possible abstract values associated with this class shall
exhibit the defined identification handle.

NOTE - This would often be achieved by ensuring that the first component of the concatenation, or a head-end insert, exhibited
the identification handle.

23.5.3 Encoder actions

23.5.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.
b) Pre-alignment and padding.
c) Start pointer.
d) Encoding space. (See 23.5.3.2.)
e) Concatenation.
f) Value padding and justification.
g) Identification handle specification.
h) Bitreversal.
23.5.3.2 If "ENCODI NG SPACE" is "variable-with-determinant”, it shall be the minimum number of "MULTI PLE OF"

units needed to contain the concatenation.

23.5.4 Decoder actions

23.5.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

¢) Encoding space.

d) Bitreversal.

e) Value padding and justification.

f) Concatenation.

23.6 Defining encoding objects for classes in the integer category

23.6.1 The defined syntax

The syntax for defining encoding objects for classes in the integer category is defined as:

#I NT ::= ENCODI NG CLASS {
-- Integer encoding
&l nt eger - encodi ngs #CONDI TI ONAL- | NT ORDERED OPTI ONAL,
& nt eger - encodi ng #CONDI TI ONAL- | NT OPTI ONAL

} WTH SYNTAX {
[ENCODI NGS &l nt eger - encodi ngs]
[ENCODI NG & nt eger - encodi ng]

ITU-T Rec. X.692 (03/2002) 95

ISO/IEC 8825-3:2003 (E)

}

23.6.2 Purpose and restrictions

23.6.2.1 This syntax is used to define the encoding of a class in the integer category by specifying one or more
encodings of the #CONDI Tl ONAL- | NT class.

23.6.2.2 Exactly one of "ENCCODI NG' and "ENCODI NGS" shall be set.

NOTE - The sole purpose of allowing "ENCODI NG' as well as "ENCODI NGS" is to provide a syntax that does not contain a
double curly-bracket ("{{") in the common case of a single encoding object. Use of "ENCODI NGS" when there is a single
encoding object is deprecated but is allowed.

23.6.2.3 If an encoding object in the "ENCCODI NGS" ordered list is defined using "I F", then all preceding encoding
objects in that list shall be defined using "I F".

23.6.3 Encoder actions

23.6.3.1 The encoder shall select and apply the first #CONDI TI ONAL- | NT encoding object in "ENCODI N&S)" whose
conditions are satisfied. It is an ECN specification error if none of the conditional encodings have conditions that are
satisfied.

NOTE - It would be unusual but not illegal if there were #CONDI TI ONAL- | NT encoding objects present that could never be
used because the conditions on use of earlier encoding objects would always be satisfied.

23.6.4 Decoder actions

23.6.4.1 The decoder shall select and use the first #CONDI TI ONAL- | NT encoding object in "ENCODI NG(S)" whose
conditions are satisfied.

23.7 Defining encoding objects for the #CONDI TI ONAL- | NT class

23.7.1 The defined syntax

The syntax for defining encoding objects for the #CONDI TI ONAL- | NT class is defined as:
#CONDI TI ONAL- | NT :: = ENCCDI NG CLASS {

-- Condition (see 21.11)
& ange-condi tion RangeCondi ti on OPTI ONAL,

-- Structure-only repl acenent specification (see 22.1)
&#Repl acenent - structure
OPTI ONAL,
& epl acenent - struct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start - poi nter REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transfornms #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bit,
&encodi ng- space- det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT fi el d-to- be-set,
&encodi ng- space-ref erence REFERENCE OPTI ONAL,
&Encoder - tr ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
-- Val ue encodi ng
&Transform #TRANSFORM ORDERED OPTI ONAL,
&encodi ng ENUVERATED

{positive-int, twos-conpl enent,
reverse-positive-int, reverse-twos-conpl enent}

96 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)
DEFAULT twos-conpl enent,

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right: O,
&val ue- pr e- paddi ng Paddi ng DEFAULT zer o,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,
&val ue- post-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&unused- bi t s-determ nation UnusedBi t sDet ermi nati on
DEFAULT fi el d-to- be-set,
&unused- bi t s-ref erence REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t ransf orns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t ransf orns #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue Handl eVal ue DEFAULT t ag: any,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[1 F & ange-condition] [ELSE]
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er-encoder -transforns]]
ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMB &Decoder -t r ansf or nms] |
[TRANSFORVS &Tr ansf or ns]
[ENCODI NG &encodi ng]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi t s-det erni nati on]
[USI NG &unused- bi t s-reference
[ENCCDER- TRANSFORMVS &Unused- bi t s- encoder - t r ansf or ns]
[DECCODER- TRANSFORVS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]
[BI T- REVERSAL &bit-reversal]

}

23.7.2 Purpose and restrictions

23.7.2.1 This syntax is used to define a #CONDI Tl ONAL- | NT encoding object. The only use of such an encoding object
is in the specification of an encoding object of a class in the integer category.

23.7.2.2 The syntax allows the specification of a single condition on the bounds of the integer for this encoding to be
applied (use of "I F"). It also allows the specification that there is no condition. The use of "ELSE", or omission of both
"I F" and "ELSE" specifies that there is no condition.

ITU-T Rec. X.692 (03/2002) 97

ISO/IEC 8825-3:2003 (E)

23.7.2.3 Using this syntax the ECN specifier can define the start of the encoding space for the encoding of a class in the
integer category, the encoding of the abstract values associated with that class, their positioning within the encoding
space, and possible bit-reversal of the encoding space.

23.7.2.4 At most one of "I F" and "ELSE" shall be present.
23.7.2.5 If "REPLACE" is set, then no other encoding property groups shall be set.

23.7.2.6 1t is an ECN specification or application error if any transform in the "TRANSFORMS" is not reversible for the
abstract value to which it is applied. The first transform of "TRANSFORMS", if present, shall have a source that is integer
and the last transform shall have a result that is integer.

NOTE — The test for the "I F" condition takes place on the bounds of the original value, and is not affected by these transforms.

23.7.2.7 The "I NT- TO- | NT" transform with the value "subtract : | ower - bound" shall be included only if the "I F"
condition restricts the application of this encoding to classes of the integer category with a lower bound, and (if present)
shall be the first transform in the list.

23.7.2.8 The "ENCODI NG SPACE SI ZE" shall not be "f i xed-t o- max" unless the "I F" condition restricts the encoding
to a class with both an upper and a lower bound.

23.7.2.9 "ENCODI NG- SPACE SI ZE" shall not be set to "sel f - del i mi ti ng-val ues".

23.7.2.10If "EXH BITS HANDLE" is set, then the specifier asserts that the encoding of all values exhibits the
identification handle.

NOTE — This will normally require use of "VALUE- PADDI NG' with justification from the left to allow the padding to exhibit the
identification handle.

23.7.3 Encoder actions

23.7.3.1 The encoder shall detect an ECN specification or application error if any of the restrictions in 23.7.2 are
violated.

23.7.3.2 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

c) Start pointer.

d) Encoding space.

e) Value encoding (see below).

f) Value padding and justification.
g) Identification handle.

h) Bitreversal.

23.7.3.3 The encoder shall apply the "TRANSFORMS", if any to the value being encoded.

23.7.3.4 The encoder shall use the following table giving the range of integer values that can be encoded in "n" bits:

"ENCCDI NG' Min value Max value
"positive-int" 0 2" -1
"reverse-positive-int" 0 2"—1
"t wos- conpl enent " —on! PR |
"rever se-twos- conpl enent” —2""! PR |

23.7.3.5 The "ENCODI NG' parameter selects the encoding as 2's-complement encoding or as a positive integer encoding,
or as the reversal of one of these. The specification of 2's-complement encoding and positive integer encoding is given
in ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3. A reversal of these encodings is an encoding in which,
following production of the "n" bits, the order of the "n" bits is reversed.

23.7.3.6 An encoder shall detect an ECN specification or an application error if a value is to be encoded into a number
of bits which is insufficient, as specified in 23.7.3.4.

23.7.3.7 If the "ENCODI NG SPACE SI ZE" is a positive integer, then its size in bits is calculated as "SI ZE" multiplied by
"MULTI PLE OF" units. If "VALUE- PADDI NG' is not set, then this shall be the number of bits "n" that the integer shall

98 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

encode into and there are no unused bits. If "VALUE- PADDI NG' is set, then the number of bits that the integer shall
encode into is reduced by the integer value "m" specified for "JUSTI FI ED", and there will be "m" unused bits.

23.7.3.8 If the "ENCODI NG SPACE SI ZE" is "f i xed-t o- max", then the encoder shall determine the minimum number
of "MULTI PLE OF" units that has sufficient bits to encode any of the values of the class, and shall proceed (as specified
above) as if "SI ZE" were a positive integer set to that value.

23.7.3.9 If the "ENCODI NG SPACE Sl ZE" is "vari abl e- wi t h- det er mi nant ", then the encoder shall determine the
minimum number of "MULTI PLE OF" units ("s", say) that has sufficient bits to encode the actual abstract value being
encoded, and shall proceed (as specified above) as if "SI ZE" were a positive integer set to that value.

23.7.3.10 The encoder (as an encoder's option) may increase "s" (as determined in 23.7.3.9) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "fi el d-t o- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG SPACE Sl ZE" is set to "encoder - opt i on-wi t h- det er mi nant ".

nan

23.7.3.11 The encoder shall then proceed (as specified above) as if "SI ZE" were a positive integer set to "s".

23.7.4 Decoder actions

23.7.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

¢) Encoding space.

d) Bitreversal.

e) Value padding and justification.
f) Value decoding (see 23.7.4.2).

23.7.4.2 The decoder shall recover the integer value from the bits used to encode it, decoding according to the specified
encoding, and shall then reverse the "TRANSFORMS" (if specified) to recover the original abstract value.

23.8 Defining encoding objects for classes in the null category

23.8.1 The defined syntax

The syntax for defining encoding objects for classes in the null category is defined as:

#NUL :: = ENCODI NG CLASS {

-- Structure-only repl acenent specification (see 22.1)
&#Repl acenent - structure
OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &*#Repl acenent - struct ure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different:any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start - poi nter REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transfornms #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,

&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bit,

&encodi ng- space- det erm nati on Encodi ngSpaceDet er mi nati on
DEFAULT fi el d-to- be-set,

&encodi ng- space-ref erence REFERENCE OPTI ONAL,

&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- Val ue pattern

ITU-T Rec. X.692 (03/2002) 99

ISO/IEC 8825-3:2003 (E)

&val ue-pattern Pattern (ALL EXCEPT different: any)
DEFAULT bits:''B,

-- Val ue padding and justification (see 22.38)

&val ue-justification Justification DEFAULT right: O,
&val ue- pr e- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue- post-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&unused- bi t s-det erm nati on UnusedBi t sDet erm nati on
DEFAULT fi el d-t o-be-set,
&unused- bi t s-ref erence REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -transforns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -t ransf or ns #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl| e- val ue Handl eVal ue DEFAULT t ag: any,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er-encoder -transforns]]
ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMB &Decoder -t r ansf or nms] |
[NULL- PATTERN &val ue-pattern]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bi t s-det erm nati on]
[USI NG &unused- bi ts-reference
[ENCODER- TRANSFORVS &Unused- bi t s- encoder -t r ansf or ns]
[DECCDER- TRANSFORMS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- posi tions
[AS &handl e-val ue]]
[BI T- REVERSAL &bit-reversal]

}
23.8.2 Purpose and restrictions
23.8.2.1 This syntax is used to define the encoding of a class in the null category.
23.8.2.2 If "REPLACE STRUCTURE" is set, then no other encoding property groups shall be set.

23.8.2.3 If the "ENCODI NG SPACE Sl ZE" is positive, it shall be sufficient to hold the size of the "NULL- PATTERN'
together with any bits added as a result of a "VALUE- PADDI NG' specification.

23.8.2.4 If there are unused bits in the encoding space, then "VALUE- PADDI NG' shall be set.

100 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

23.8.3 Encoder actions

23.8.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

c) Start pointer.

d) Encoding space.

e) Value encoding (see 23.8.3.2).
f) Value padding and justification.
g) Identification handle.

h) Bitreversal.
23.8.3.2 The value encoding shall be the bits of the "NULL- PATTERN".

23.8.3.3 If "ENCODING SPACE SIZE" is ‘"variable-with-determinant" or "encoder-option-with-
det er em nant ", it shall be the minimum number of "MULTI PLE OF" units needed to contain the pattern ("s", say),
subject to 23.8.3.4.

23.8.3.4 An encoder (as an encoder's option) may increase "s" (as determined in 23.8.3.3) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "fi el d-t o- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG- SPACE S| ZE" is set to "encoder - opt i on- wi t h- det er m nant ".

23.8.3.5 If there are unused bits in the encoding space, then "VALUE- PADDI NG' shall be applied.

23.8.4 Decoder actions

23.8.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.

¢) Encoding space.

d) Bitreversal.

e) Value padding and justification.

23.8.4.2 The decoder shall determine the size of the null pattern, and identify those bits in the encoding, but shall
silently accept any value for those bits.

23.9 Defining encoding objects for classes in the octetstring category

23.9.1 The defined syntax

The syntax for defining encoding objects for classes in the octetstring category is defined as:
#OCTETS :: = ENCODI NG CLASS {

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space-pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0' B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Octets val ue encoding

&val ue-reversal BOOLEAN DEFAULT FALSE,

&Tr ansf orns #TRANSFORM ORDERED OPTI ONAL,

& xtets-repetition-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&oct ets-repetition-encoding #CONDI TI ONAL- REPETI TI ON OPTI ONAL,

-- ldentification handl e specification (see 22.9)

ITU-T Rec. X.692 (03/2002) 101

ISO/IEC 8825-3:2003 (E)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e-val ue Handl eVal ue DEFAULT tag: any,
-- Contai ned type encoding specification (see 22.11)
&Pri mar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&Secondar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&over -ri de- encoded- by BOOLEAN DEFAULT FALSE
} WTH SYNTAX {

[ALI GNED TO

[NEXT]

[ANY]

&encodi ng- space- pre-alignnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start - poi nter

[MULTI PLE OF &start-pointer-unit]

[ENCODER- TRANSFORMS &St art - poi nt er - encoder -t ransf or ns] |
[VALUE- REVERSAL &val ue-reversal]
[TRANSFORVS &Tr ansf or ns]

[REPETI TI ON- ENCODI NGS &Cctets-repetiti on-encodi ngs]
[REPETI TI ON- ENCODI NG &oct et s-repetition-encodi ng]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]
[CONTENTS- ENCODI NG &Pr i mar y- encodi ng- obj ect - set
[COWPLETED BY &Secondary-encodi ng- obj ect - set]
[OVERRI DE &over -ri de-encoded- by]]

}

23.9.2 Model for the encoding of classes in the octetstring category

23.9.2.1 The model of octetstring encoding is:
a) The order of octets in the octetstring can be reversed.
b) The octets are then considered as a repetition of an octet.
c¢) There is an optional transform (specified by "TRANSFORMVS") in which each octet is transformed into a
self-delimiting bitstring.
d) Either "REPETI TI ON- ENCODI NG' or "REPETI TI ON- ENCODI NGS" specify how the repetition of octet is to

be encoded.

NOTE - The sole purpose of allowing "REPETITION-ENCODING' as well as
"REPETI TI ON- ENCODI NGS" is to provide a syntax that does not contain a double curly-bracket ("{{") in the
common case of a single conditional encoding. Use of "REPETI TI ON- ENCODI NGS" when there is a single
conditional encoding is deprecated but is allowed.

23.9.2.2 Bounds (if present) on the class being encoded (a class in the octetstring category) are bounds on the number of
octets in the octetstring forming each abstract value.

23.9.2.3 When considered as a repetition of an octet, these bounds shall be interpreted as bounds on the number of
repetitions, and can be used in the specification of the encoding objects of class #CONDI TI ONAL- REPETI TI ON that are
used in the specification of this encoding object.

23.9.3 Purpose and restrictions

23.9.3.1 This syntax is used to define the start of the encoding space for a class in the octetstring category, the encoding
of the abstract values associated with that class, an optional declaration that all octetstring encodings exhibit a specified
identification handle, a specification of how to encode a contained type.

23.9.3.2 The #CONDI TI ONAL- REPETI TI ON that is applied by this encoding object shall not specify "REPLACE" unless it
is "REPLACE STRUCTURE".

23.9.3.3 If any of the #CONDI TI ONAL- REPETI Tl ON encoding objects contain a "REPLACE STRUCTURE" clause, then all
of the #CONDI Tl ONAL- REPETI Tl ON encoding objects shall contain a "REPLACE STRUCTURE" clause.

23.9.3.4 If there is a "REPLACE STRUCTURE" clause in the #CONDI TI ONAL- REPETI TI ON encoding objects, then no
other parameters shall be set.

23.9.3.5 The first transform of "TRANSFORVE" (if any) shall have a source that is bitstring and the last transform shall
have a result that is a self-delimiting bitstring (see 3.2.41).

102 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

23.9.3.6 It is an ECN specification or application error if any transform in the "TRANSFORMS" is not reversible for the
abstract value to which it is applied.

23.9.3.7 Exactly one of "REPETI TI ON- ENCODI NG' and "REPETI TI ON- ENCODI NGS" shall be set.

23.9.3.8 If an encoding object in the "REPETI TI ON- ENCODI NGS" ordered list is defined using "I F", then all preceding
encoding objects in that list shall be defined using "I F".

23.9.3.9 If "EXH BI TS HANDLE" is set, then all encodings of values of this class shall exhibit the specified identification
handle.

NOTE - This will in general require restrictions on the abstract values of the associated type.
23.9.3.10 If "EXHI BI TS HANDLE" is set, then "ALI GNED TO' shall not be set in any of the "REPETI TI ON- ENCODI NG&(S)"
specifications.

23.9.4 Encoder actions

23.9.4.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.
¢) Value encoding as specified below.
d) Repetition encoding as specified by the first "REPETI TI ON- ENCCDI N&(S)" whose condition is satisfied.
e) Identification handle.
f) Contained type encoding.
23.9.4.2 For value encoding, the encoder shall:
a) Reverse the order of octets in the entire octetstring abstract value if "VALUE- REVERSAL" is set to TRUE;
b) Treat the octetstring value as a repetition of octet;

c) Apply the "TRANSFORMB" (if any) to each octet to produce a repetition of bitstring.
NOTE - If there are no transforms, each octet forms a bitstring.

d) Encode the repetition by applying the first "REPETI TI ON- ENCODI NG(S)" whose condition is satisfied.
23.9.4.3 It is an ECN specification error if there is no "REPETI TI ON- ENCODI N&(S)" whose condition is satisfied.

23.9.5 Decoder actions

23.9.5.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.
¢) Value decoding (see 23.9.5.2).
d) Contained type decoding.
23.9.5.2 The decoder shall reverse the "TRANSFORVS" (if any) to recover the original octets.

23.9.5.3 If "VALUE- REVERSAL" is set to TRUE, then the final order of the octets in the octetstring abstract value shall be
reversed.
23.10 Defining encoding objects for classes in the optionality category

23.10.1 The defined syntax

The syntax for defining encoding objects for classes in the optionality category is defined as:

#OPTI ONAL :: = ENCODI NG CLASS {

-- Structure-only repl acenent specification (see 22.1)
&#Repl acenent - structure
OPTI ONAL,
&r epl acenent - struct ur e- encodi ng- obj ect &*#Repl acenent -structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

ITU-T Rec. X.692 (03/2002) 103

ISO/IEC 8825-3:2003 (E)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space- pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0' B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Optionality determ nation (see 22.5)

&optionality-determnation OptionalityDetermnation
DEFAULT fi el d-to-be-set,

&optionality-reference REFERENCE OPTI ONAL,

&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

&andl e-i d PrintableString

DEFAULT "def aul t - handl e"

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - struct ure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start - pointer

[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder - transf or ns]]
PRESENCE

[DETERM NED BY &optional ity-deternination
[HANDLE &handl e-i d]]

[USI NG &optionality-reference
[ENCODER- TRANSFORMS &Encoder -t r ansf or nms]
[DECODER- TRANSFORMS &Decoder -t r ansf or nms] |

}

23.10.2 Purpose and restrictions
23.10.2.1 This syntax is used to define the encoding of a class in the optionality category.
23.10.2.2 If "REPLACE STRUCTURE" is set, then no other encoding property groups shall be set.

23.10.3 Encoder actions

23.10.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement (see 23.10.3.2).
b) Pre-alignment and padding.
c) Start pointer.

d) Optionality determination.

23.10.3.2 If "REPLACE STRUCTURE" is set then the entire component (including any classes in the tag category, but
excluding classes in the optionality category) is provided as the actual parameter for the replacement structure, which
becomes a mandatory component.

23.10.4 Decoder actions

23.10.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.
b) Start pointer.

c¢) Optionality determination.

104 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

23.11 Defining encoding objects for classes in the pad category

23.11.1 The defined syntax

The syntax for defining encoding objects for classes in the pad category is defined as:
#PAD : : = ENCODI NG CLASS {

-- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure
OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng-obj ect &*#Repl acenent -structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space- pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder -transforns #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,

&encodi ng- space-uni t Unit (ALL EXCEPT repetitions)
DEFAULT bit,

&encodi ng- space-det erm nati on Encodi ngSpaceDet er m nati on
DEFAULT fi el d-to-be-set,

&encodi ng- space-reference REFERENCE OPTI ONAL,

&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- Val ue encodi ng
&pad- pattern Pattern (ALL EXCEPT different:any)
DEFAULT bits:''B,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi tions | NTEGER (0..NMAX) OPTI ONAL,
&handl e- val ue Handl eVal ue DEFAULT tag: any,

-- Bit reversal specification (see 22.12)
&bi t -reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space-pre-alignnent-unit
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er-encoder -transforns]]
ENCCDI NG- SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng- space-unit]]
[DETERM NED BY &encodi ng- space-det erm nati on]
[USI NG &encodi ng- space-ref erence
[ENCODER- TRANSFORVS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Decoder -t ransf or ns] |
[PAD- PATTERN &pad- patt ern]
[EXHI BI TS HANDLE &exhi bi t ed- handl e AT &Handl e-positions
[AS &handl e-val ue]]

ITU-T Rec. X.692 (03/2002) 105

ISO/IEC 8825-3:2003 (E)

[BI T- REVERSAL &bit-reversal]
}

23.11.2 Purpose and restrictions
23.11.2.1 This syntax is used to define the encoding of a class in the pad category.

23.11.2.2 If "ENCCDI NG- SPACE Sl ZE" is positive, "PAD- PATTERN" shall not be of zero length, and is replicated and
truncated to fill the encoding space.

23.11.2.3 If "REPLACE STRUCTURE" is set, then no other encoding property group shall be set.

23.11.3 Encoder actions

23.11.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.
c) Start pointer.

d) Encoding space.

e) Value encoding (see below).
f) Identification handle.

g) Bitreversal.

23.11.3.2 If "ENCODI NG SPACE SI ZE" is positive, the value shall be the "PAD- PATTERN", replicated and truncated to fill
the encoding space.

23.11.3.3"ENCCDI NG SPACE SIZE" is "fixed-to-max", or is 'variable-with-deternmnant" or is
"encoder - opti on-wi t h- det er mi nant ", then the encoding space shall be the smallest number of "MJULTI PLE OF"
units that is greater than the size of "PAD- PATTERN" ("s", say), and the "PAD- PATTERN" shall then be replicated and
truncated to fill that space (but see 23.11.3.4).

NOTE - This will be an empty encoding space if the "PAD- PATTERN" is null.

23.11.3.4 An encoder (as an encoder's option) may increase "s" (as determined in 23.11.3.3) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "fi el d-t o- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG- SPACE S| ZE" is set to "encoder - opt i on- wi t h- det er m nant ".

23.11.4 Decoder actions

23.11.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

c) Bitreversal.

d) Encoding space.
23.11.4.2 The decoder shall determine the size of the pad value encoding, and identify those bits in the encoding, but
shall silently accept any value for those bits.
23.12 Defining encoding objects for classes in the repetition category

23.12.1 The defined syntax

The syntax for defining encoding objects for classes in the repetition category is defined as:

#REPETI TI ON : : = ENCODI NG CLASS {
-- Repetition encoding
&Repeti ti on-encodi ngs #CONDI TI ONAL- REPETI TI ON ORDERED OPTI ONAL,
&r epetition-encoding #CONDI TI ONAL- REPETI TI ON OPTI ONAL

} WTH SYNTAX {
[REPETI TI ON- ENCODI NGS &Repet i ti on-encodi ngs]
[REPETI TI ON- ENCODI NG &r epeti ti on-encodi ng]

106 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

}

23.12.2 Purpose and restrictions

23.12.2.1 This syntax is used to define the encoding of a class in the repetition category by specifying one or more
encodings of the #CONDI Tl ONAL- REPETI Tl ONclass.

23.12.2.2 Exactly one of "REPETI TI ON- ENCODI NG' and "REPETI TI ON- ENCODI NGS" shall be set.

NOTE - The sole purpose of allowing "REPETI TI ON- ENCODI NG' as well as "REPETI TI ON- ENCCDI NGS" is to provide a
syntax that does not contain a double curly-bracket ("{{") in the common case of a single encoding object. Use of
"REPETI TI ON- ENCODI NGS" when there is a single encoding object is deprecated but is allowed.

23.12.2.3 If an encoding object in the "REPETI TI ON- ENCODI NGS" ordered list is defined using "I F", then all preceding
encoding objects in that list shall be defined using "I F".

23.12.3 Encoder actions

23.12.3.1 The encoder shall select and apply the first #CONDI TI ONAL- REPETI TI ON encoding object in "ENCODI NG&(S)"
whose conditions are satisfied. It is an ECN specification error if none of the conditional encodings have conditions that
are satisfied.

NOTE - It would be unusual but not illegal if there were #CONDI TI ONAL- REPETI Tl ON encoding objects present that could
never be used because the conditions on use of earlier encoding objects would always be satisfied.

23.12.4 Decoder actions

23.12.4.1 The decoder shall select and use the first #CONDI TI ONAL- REPETI TI ON encoding object in "ENCODI NG&(S)"
whose conditions are satisfied.

23.13 Defining encoding objects for the #CONDI TI ONAL- REPETI Tl ON class

23.13.1 The defined syntax
The syntax for defining encoding objects for the #CONDI TI ONAL- REPETI Tl ONclass is defined as:
#CONDI TI ONAL- REPETI TI ON : : = ENCCDI NG CLASS {

-- Condition (see 21.12)
&si ze-range-condi tion Si zeRangeCondi ti on OPTI ONAL,

-- Structure or conponent replacenment specification (see 22.1)
&#Repl acenent - structure

OPTI ONAL,
& epl acenent - struct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL,
&#Head- end- structure OPTI ONAL,

-- Pre-alignment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zero,

&encodi ng- space- pre-pattern Non- Nul | - Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0'B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Repetition space specification (see 22.7)

& epetition-space-size Encodi ngSpaceSi ze

DEFAULT sel f-delimting-val ues,
&repetition-space-unit Uni t

DEFAULT bi t,

&repetition-space-determ nation Repetiti onSpaceDet erm nati on
DEFAULT fi el d-to-be-set,

&mai n-r ef erence REFERENCE OPTI ONAL,
&Encoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
&andl e-i d PrintableString

DEFAULT "def aul t - handl e",
& erm nation-pattern Non- Nul | -Pattern (ALL EXCEPT

di fferent:any) DEFAULT bits '0'B,

ITU-T Rec. X.692 (03/2002) 107

ISO/IEC 8825-3:2003 (E)
-- Repetition alignnent
&repetition-alignnent ENUMVERATED { none, al i gned}
DEFAULT none,

-- Val ue padding and justification (see 22.8)

&val ue-justification Justification DEFAULT right: O,
&val ue- pr e- paddi ng Paddi ng DEFAULT zer o,
&val ue-pre-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,
&val ue- post-pattern Non- Nul | - Pattern DEFAULT bits:'0'B,
&unused- bi t s-determ nation UnusedBi t sDet erm nati on
DEFAULT fi el d-to- be-set,
&unused- bi t s-ref erence REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t ransf orns #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -transforns #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi tions I NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue Handl eVal ue DEFAULT t ag: any,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[1F &size-range-condition] [ELSE]
[REPLACE
[STRUCTURE]
[COVIPONENT]
[ALL COVPONENTS]
W TH &Repl acenent - structure
[ENCODED BY &r epl acenent - struct ur e- encodi ng- obj ect
[NSERT AT HEAD &#Head- end-structure]]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnment -uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space-pre-pattern]]]
[START- PO NTER &start-pointer
[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORVS &St art - poi nt er - encoder -t ransf or ns]]
REPETI TI ON- SPACE
[SI ZE &repetition-space-size
[MULTI PLE OF &repetition-space-unit]]
[DETERM NED BY &repetition-space-determ nation
[HANDLE &handl e-i d]]
[USI NG &mai n-ref erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or nms]
[DECODER- TRANSFORMS &Decoder -t r ansf or ns] |
[PATTERN &t erm nati on-pattern]
[ALI GNVENT &repetition-alignment]
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bit s-det erni nati on]
[USI NG &unused- bi t s-reference

[ENCODER- TRANSFORMS &Unused- bi t s- encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Unused- bi t s- decoder-transforns]]]]

[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]
[BI T- REVERSAL &bit-reversal]

108 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

}

23.13.2 Purpose and restrictions

23.13.2.1 This syntax is used to define the encoding of a class in the repetition category subject to satisfaction of a
condition based on the bounds of the repetition (use of "I F"). It also allows the specification that there is no condition.
The use of "ELSE", or omission of both "I F" and "ELSE" specifies that there is no condition.

23.13.2.2 At most one of "I F" and "ELSE" shall be present.
23.13.2.3 If "REPLACE STRUCTURE" is set, then no other encoding property groups shall be set.

23.13.2.4If "EXH BI TS HANDLE" is set, this asserts that all encodings of this class exhibit the specified identification
handle (see also 22.9.2.4).

23.13.2.5 "REPETI TI ON- SPACE SI ZE" shall not be "f i xed-t o- max".

23.13.2.6If the "REPETITION-SPACE SIZE" is "self-deliniting-values", and "MUWTIPLE OF" is
"repeti tions", then the number of repetitions shall be constrained by bounds to a single value.

23.13.2.7 If there are any unused bits in the encoding space, then "VALUE- PADDI NG' shall be set.

23.13.3 Encoder actions

23.13.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

¢) Start pointer.

d) Repetition space.

e) Repetition encoding (see 23.13.3.4).
f) Value padding and justification.

g) Identification handle.

h) Bitreversal.

23.13.3.2 If "ALI GNMENT" is set to "al i gned", then the settings of pre-alignment and padding shall be used to pre-align
each encoding of the component.

NOTE - This is performed before any pre-alignment specified by the component.

23.13.3.3 The complete encodings of the components (with any pre-alignment however specified) shall be concatenated
to form the bits for the value of the repetition.

23.13.341f the "REPETI TI ON- SPACE Sl ZE" is "vari abl e-wi t h- det er m nant " or
"encoder - opti on-wi t h- det er mi nant ", then the size shall be the smallest multiple of "MULTI PLE OF" units ("s",
say) that will contain the value of the repetition (but see 23.13.3.5).

23.13.3.5 An encoder (as an encoder's option) may increase "s" (as determined in 23.13.3.4) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "fi el d-t o- be-set " or "fi el d-t o- be- used" imposes) if
"ENCODI NG SPACE Sl ZE" is set to "encoder - opt i on-wi t h- det er mi nant ".

23.13.3.6 The repetition value is then placed in the encoding space, using "VALUE- PADDI NG' if there are any unused
bits.

23.13.4 Decoder actions

23.13.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

c) Repetition space.

d) Bitreversal.

e) Value padding and justification.

f) Repetition decoding (see 23.13.4.2).

ITU-T Rec. X.692 (03/2002) 109

ISO/IEC 8825-3:2003 (E)

23.13.4.2 Each repetition shall be extracted, and decoded in accordance with the encoding specification of the
component of the repetition class.

23.14 Defining encoding objects for classes in the tag category

23.14.1 The defined syntax

The syntax for defining encoding objects for classes in the tag category is defined as:

#TAG :: = ENCODI NG CLASS {

-- Structure-only replacenent specification (see 22.1)
&#Repl acenent - structure
OPTI ONAL,
& epl acenent - st ruct ur e- encodi ng- obj ect &*#Repl acenent - structure OPTI ONAL,

-- Pre-alignnment and paddi ng specification (see 22.2)

&encodi ng- space-pre-alignnent-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng- space-pre-pattern Non- Nul | -Pattern (ALL EXCEPT different: any)
DEFAULT bits:'0' B,

-- Start pointer specification (see 22.3)

&start-pointer REFERENCE OPTI ONAL,

&start-pointer-unit Unit (ALL EXCEPT repetitions) DEFAULT bit,
&St art - poi nter-encoder-transforns #TRANSFORM ORDERED OPTI ONAL,

-- Encodi ng space specification (see 22.4)

&encodi ng- space- si ze Encodi ngSpaceSi ze
DEFAULT sel f-delimting-val ues,
&encodi ng- space- uni t Unit (ALL EXCEPT repetitions)
DEFAULT bi t,
&encodi ng- space- det er m nati on Encodi ngSpaceDet er mi nat i on
DEFAULT fi el d-to- be-set,
&encodi ng- space-ref erence REFERENCE OPTI ONAL,
&Encoder -t ransf orns #TRANSFORM ORDERED OPTI ONAL,
&Decoder -t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
-- Val ue padding and justification (see 22.8)
&val ue-justification Justification DEFAULT right: 0,
&val ue- pr e- paddi ng Paddi ng DEFAULT zer o,
&val ue-pre-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,
&val ue- post-pattern Non- Nul | - Patt ern DEFAULT bits:'0'B,
&unused- bi t s-determ nation UnusedBi t sDet er mi nat i on
DEFAULT fi el d-to- be-set,
&unused- bi t s-ref erence REFERENCE OPTI ONAL,

&Unused- bi t s- encoder -t ransf or s #TRANSFORM ORDERED OPTI ONAL,
&Unused- bi t s- decoder -tr ansf or ns #TRANSFORM ORDERED OPTI ONAL,

-- ldentification handl e specification (see 22.9)

&exhi bi t ed- handl e Printabl eString OPTI ONAL,
&Handl e- posi ti ons | NTEGER (0..MAX) OPTI ONAL,
&handl e- val ue Handl eVal ue DEFAULT t ag: any,

-- Bit reversal specification (see 22.12)
&bi t -reversal Rever sal Speci fication
DEFAULT no-rever sal

} WTH SYNTAX {
[REPLACE
[STRUCTURE]
W TH &#Repl acenent - structure
[ENCODED BY &r epl acenent - st ruct ur e- encodi ng- obj ect]]
[ALI GNED TO
[NEXT]
[ANY]
&encodi ng- space- pre-al i gnnent - uni t
[PADDI NG &encodi ng- space- pr e- paddi ng
[PATTERN &encodi ng- space- pre-pattern]]]
[START- PO NTER &start-pointer

110 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

[MULTI PLE OF &start-pointer-unit]
[ENCODER- TRANSFORMS &St art - poi nt er - encoder -t ransf or nms] |
ENCODI NG SPACE
[SI ZE &encodi ng- space-si ze
[MULTI PLE OF &encodi ng-space-unit]]
[DETERM NED BY &encodi ng- space- det erm nati on]
[USI NG &encodi ng- space-r ef erence
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECODER- TRANSFORMB &Decoder -t r ansf or ns] |
[VALUE- PADDI NG
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e- paddi ng
[PATTERN &val ue-pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]
[UNUSED BI TS
[DETERM NED BY &unused- bit s-det erni nati on]
[USI NG &unused- bits-reference
[ENCODER- TRANSFORVS &Unused- bi t s- encoder -t r ansf or ns]
[DECODER- TRANSFORMS &Unused- bi t s- decoder -transforns]]]]
[EXH BI TS HANDLE &exhi bi t ed- handl e AT &Handl e- positions
[AS &handl e-val ue]]
[Bl T- REVERSAL &bit-reversal]

}

23.14.2 Purpose and restrictions

23.14.2.1 This syntax is used to define the encoding of a class in the tag category.

23.14.2.2 If "REPLACE STRUCTURE" is set, then no other specifications shall be set.

23.14.2.3 The "ENCODI NG- SPACE S| ZE" shall not be "f i xed-t o- max" or "sel f - del i m ti ng-val ues".

23.14.3 Encoder actions

23.14.3.1 For any encoding property group that is set, the encoder shall perform the encoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Replacement.

b) Pre-alignment and padding.

c) Start pointer.

d) Encoding space.

e) Value encoding (see 23.14.3.3).
f) Value padding and justification.
g) Identification handle.

h) Bitreversal.

23.14.3.2 The encoder shall determine the minimum number of bits "n" needed to encode the tag number as the smallest
value of "n" such that 2"—1 is greater than or equal to the tag number. If "n" is zero, it shall be increased to 1.

23.14.3.3 The encoding shall be a positive integer encoding. The specification of a positive integer encoding is given in
ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3.

23.14.3.4 An encoder shall detect an ECN specification error if a tag number is to be encoded into a number of bits
which is insufficient, as specified above.

23.14.3.51f "ENCODI NG SPACE SI ZE" is a positive integer, then its size in bits is calculated as "SI ZE" multiplied by
"MULTI PLE OF" units. If "VALUE- PADDI NG' is not set, then this shall be the number of bits "n" that the tag number shall
encode into and there are no unused bits. If "VALUE- PADDI NG' is set, then the number of bits that the tag number shall
encode into is reduced by the integer value "m" specified for "JUSTI FI ED", and there will be "m" unused bits.

23.14.3.6 If "ENCODI NG- SPACE Sl ZE" is "vari abl e-wi t h-det er mi nant " or
"encoder - opti on-wi t h-det er m nant ", then the encoder shall determine the minimum number of "MULTI PLE OF"
units that has sufficient bits to encode the tag number ("s", say), and shall proceed (as specified above) as if "SI ZE"
were a positive integer set to that value (but see 23.14.3.7).

ITU-T Rec. X.692 (03/2002) 111

ISO/IEC 8825-3:2003 (E)

23.14.3.7 An encoder (as an encoder's option) may increase "s" (as determined in 23.14.3.6) in "MULTI PLE OF" units
(subject to any restrictions that the range of values of any "fi el d-t o- be-set" or "fi el d-t o- be- used" imposes) if
"ENCODI NG- SPACE S| ZE" is set to "encoder - opt i on- wi t h- det er m nant ".

23.14.4 Decoder actions

23.14.4.1 For any encoding property group that is set, the decoder shall perform the decoder actions specified in clause
22, in the following order and in accordance with the encoding object definition:

a) Pre-alignment and padding.

b) Start pointer.

¢) Encoding space.

d) Bitreversal.

e) Value padding and justification.
f) Value decoding.

23.14.4.2 The decoder shall recover the tag number from the bits used to encode it, decoding from a positive integer
encoding.

23.15 Defining encoding objects for classes in the other categories

In this version of this Recommendation | International Standard, there is no defined syntax for classes in the following
categories:
objectidentifier

opentype
real

24 Defined syntax specification for the #TRANSFORMencoding class

24.1 Summary of encoding properties and defined syntax

24.1.1 The syntax for defining encoding objects for the #TRANSFORMclass shall be:

#TRANSFORM : : = ENCODI NG CLASS {

-- int-to-int (see 24.3)

& nt-to-int CHO CE
{ii ncrement I NTEGER (1..MAX),
decr enent I NTEGER (1..NAX),
mul tiply I NTEGER (2. .MAX),
di vi de | NTEGER (2. . MAX),
negat e ENUMVERATED{ val ue},
modul o I NTEGER (2. . MAX),
subt ract ENUMERATED(| ower - bound}
} OPTI ONAL,

-- bool -to-bool (see 24.4)

&bool -t o- bool CHO CE
{l ogi cal ENUVERATED{ not } }

DEFAULT | ogi cal : not,

-- bool-to-int (see 24.5)

&bool -to-int ENUVERATED {true-zero, true-one}
DEFAULT true-one,

-- int-to-bool (see 24.6)

& nt -t o- bool ENUMERATED { zero-true, zero-fal se}
DEFAULT zero-fal se,

& nt-to-bool-true-is | NTEGER OPTI ONAL,

& nt-to-bool-fal se-is | NTEGER OPTI ONAL,

-- int-to-chars (see 24.7)

& nt-to-chars-size Resul t Si ze DEFAULT vari abl e,

& nt-to-chars-plus BOOLEAN DEFAULT FALSE,

& nt-to-chars-pad ENUVMERATED

{spaces, zeros} DEFAULT zeros,

112 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

-- int-to-bits (see 24.8)

& nt-to-bits-encoded-as ENUMVERATED
{positive-int, twos-conplenent}
DEFAULT twos- conpl enent,

& nt-to-bits-unit Unit (1..MAX) DEFAULT bit,

& nt-to-bits-size Resul t Si ze DEFAULT vari abl e,

-- bits-to-int (see 24.9)

&bi ts-to-int-decoded-assum ng ENUVERATED
{positive-int, twos-conplenent}
DEFAULT twos- conpl enent,

-- char-to-bits (see 24.10)

&char -t 0- bi t s- encoded- as ENUMERATED
{is010646, conpact, mapped}
DEFAULT conpact,

&Char-to-bits-chars Uni versal String (SIZE(1))
ORDERED OPTI ONAL,

&Char -t o- bi t s-val ues Bl T STRI NG ORDERED OPTI ONAL,

&char-to-bits-unit Unit (1..MAX) DEFAULT bit,

&char-to-bits-size Resul t Si ze DEFAULT vari abl e,

-- bits-to-char (see 24.11)
&bi t s-t 0- char - decoded- assum ng ENUVERATED
{is010646, napped}
DEFAULT i 5010646,
&Bi t s-t o-char-val ues BI T STRI NG ORDERED OPTI ONAL,
&Bi ts-to-char-chars Uni versal String (Sl ZE(1))
ORDERED OPTI ONAL,

-- bit-to-bits (see 24.12)

&bit-to-bits-one Non- Nul | - Pattern DEFAULT bits:'1'B,
&it-to-bits-zero Non- Nul | - Pattern DEFAULT bits:'0'B,
-- bits-to-bits (see 24.13)

&Sour ce-val ues Bl T STRI NG ORDERED,

&Resul t - val ues Bl T STRI NG ORDERED,

-- chars-to-conposite-char (see 24.14)
-- There are no encoding properties for this transformation

-- bits-to-conposite-bits (see 24.15)
&bits-to-conposite-bits-unit Unit (1..MAX) DEFAULT bit

-- octets-to-conposite-bits (see 24.16)
-- There are no encoding properties for this transformation

-- conposite-char-to-chars (see 24.17)
-- There are no encoding properties for this transformation

-- conposite-bits-to-bits (see 24.18)
-- There are no encoding properties for this transformation

-- conposite-bits-to-octets (see 24.19)
-- There are no encoding properties for this transformation

} W TH SYNTAX {
-- Only one of the followi ng clauses can be used.
[INT-TOINT & nt-to-int]
[BOOL- TO-BOOL [AS &bool -t o-bool]]
[BOOL- TO- I NT AS &bool -to-int]
[| NT- TO- BOOL
[AS & nt-to-bool]

[TRUE-1S & nt-to-bool-true-is]
[FALSE-1S &l nt-to-bool -fal se-is]]

ITU-T Rec. X.692 (03/2002) 113

ISO/IEC 8825-3:2003 (E)

[I NT- TO- CHARS
[SI ZE & nt-to-chars-size]
[PLUS- SI GN & nt -t o-chars-pl us]
[PADDI NG &i nt -t o- char s- pad]]

[INT-TO-BI TS
[AS & nt-to-bits-encoded- as]
[SIZE & nt-to-bits-size]
[MULTIPLE OF & nt-to-bits-unit]]

[BI TS- TO- | NT
[AS &bits-to-int-decoded-assun ng]]

[CHAR- TO-BI TS
[AS &char -t o-bits-encoded- as]
[CHAR- LI ST &Char -t o-bits-chars]
[BI TS- LI ST &Char -t o- bi ts-val ues]
[SI ZE &char-to-bits-size]
[MULTI PLE OF &char-to-bits-unit]]

[Bl TS- TO- CHAR
[AS &bits-to-char-decoded-assum ng]
[BI TS-LI ST &Bits-to-char-val ues]
[CHAR- LI ST &Bits-to-char-chars]]

[BIT-TOBITS
[ZERO PATTERN &bi t-to-bits-zero]
[ONE- PATTERN &bi t-to-bits-one]]

[BITS-TOBITS
SOURCE- LI ST &Sour ce-val ues
RESULT- LI ST &Resul t - val ues]

[CHARS- TO- COVPCSI TE- CHAR]

[BI TS- TO COWCSI TE- BI TS
[UNIT &bits-to-conmposite-bits-unit]]

[OCTETS- TO- COMPCSI TE- Bl TS
[COVPOS! TE- CHAR- TO- CHARS]
[COWPCS! TE- BI TS- TO Bl TS]

[COWPCOS! TE- Bl TS- TO- OCTETS]

24.2 Source and target of transforms

24.2.1 The #TRANSFORMencoding class allows the specification of procedures which transform input abstract values
(the source) into output abstract values of the same or a different type (the result). It also allows the specification of
procedures that map a characterstring, octetstring or bitstring source into a transform composite, and a transform
composite (whose values are a single character, a single octet, or bitstrings with a fixed unit size) into an abstract value
(a characterstring, an octetstring, or a bitstring). The source is either the result of a previous transform, or is obtained
from a source class (see 19.4). The result is either the source for a following transform, or becomes associated with a
target class (see 19.4).

NOTE - Clause 23 also uses transforms whose source is a single bit and a single character.

24.2.2 These transforms are used in the definition of value mappings and in the definition of encoding objects for
encoding classes in the bit-field group of categories (see clauses 20 to 23).

24.2.3 The source and result are indicated by words ("I NT- TO- | NT", "BOOL- TO- BOOL", etc.) in the specification of a
#TRANSFORMencoding object, and are defined in the associated text.

24.2.4 Subclauses 24.2.4.1 to 24.2.4.3 specify rules for using transforms in succession, and for the source and target
classes of a list of transforms.

24.2.4.1 When encoding objects of the class #TRANSFORM are specified in an ordered list, the source of a following
#TRANSFORMencoding object shall be the result of the preceding #TRANSFORMencoding object.

114 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

24.2.4.2 For the first and last of an ordered list of transforms used in the definition of encoding objects in clauses 22 and
23, text in those clauses specifies the source for the first transform and the required result for the last transform.

24.2.4.3 For the first and last of an ordered list of transforms used in the specification of value mapping by transforms in
19.4, text in that subclause specifies a source class and a target class, both of which will be of the bitstring, boolean,
characterstring, integer or octetstring category (see 19.4.2). The required source for the first transform and the required
result of the last transform (for each of these categories) are specified in 24.2.7.

24.2.5 Text in this clause specifies the source of a transform and the result of a transform as an integer, a boolean, a
characterstring, a bitstring, a single character, or a single bit (source only). The source and result of a transform can also
be a composite of these values. Transform composites can only be produced by transforms, and must be proceseed by
another (the next) transform in a list of transforms. There are two groups of transforms: those designed to create
composites from abstract values or to produce an abstract value from a composite; and those designed to transform
single values. The latter can also transform composites of those values, producing a composite as the result which is the
transform of every element in the source composite.

24.2.6 A source or target that is a single bit or a single character occurs only when successive transforms have these as
output and input, or as specified in clauses 22 and 23. The first transform of the ordered list referenced in 19.4 shall not
have a source which is a single bit or a single character. The last transform of the ordered list referenced in 19.4 shall
not have a target which is a single bit or a single character.

24.2.7 When used in 19.4, the source for the first transform and the target for the last transform shall be the same as
the category of the source encoding class and target encoding class (respectively), with the following exceptions. When
the category of the source encoding class is octetstring, the source for the first transform shall be bitstring (treating each
octetstring value as a bitstring value). When the last transform is "Bl TS- TO Bl TS" with "MULTI PLE OF" set to 8, the
target class may be octetstring.

24.2.8 The following subclauses specify conditions on the abstract values of the source which enable a transform to be
defined as reversible. It is an ECN or application error if such values are supplied to a transform which is required to be
reversible, and encoders shall not generate encodings for such values.

24.3 The int-to-int transform
NOTE — Examples of this transform are given in D.1.2.2.

24.3.1 The int-to-int transform uses the following encoding property:

& nt-to-int CHO CE
{i ncrement I NTEGER (1..MAX),
decr enent I NTEGER (1..MAX),
mul tiply I NTEGER (2. . MAX),
di vi de I NTEGER (2. . MAX),
negat e ENUMERATED{ val ue},
nodul o I NTEGER (2. . MAX),
subt ract ENUMERATED{ | ower - bound}
} OPTI ONAL

24.3.2 The syntax for the int-to-int transform shall be:
[INT-TO INT & nt-to-int]

24.3.3 Both the source and result of this transform are integer or an integer composite. There are no bounds associated
with the result unless this is the last transform in a mapping by transforms (see 19.4) (which means that neither the
source nor the target can be a composite) and the target class of the mapping by transforms has bounds. In that case, it is
an ECN specification or application error if the transform is applied to source integer values that do not map into the
bounds of the target class.

24.3.4 An int-to-int transform is defined by giving a value to "I NT- TO- | NT", permitting any given encoding object to
specify precisely one arithmetic operation. General arithmetic can, however, be defined by the use of an ordered list of
transforms (this is permitted wherever transforms involving integers are allowed).

" n " n

24.3.5 The values "i ncrenment : n", "decrenment: n", "nmul ti ply: n", "negat e: n" have their normal mathematical
meaning.

24.3.6 The value "di vi de: n" is defined to produce an integer result which is the integer value that is closest to the
mathematical result, but is no further from zero than that result. In programming terms, "di vi de: n" truncates towards
zero, so a value of -1 with "di vi de: 2" will give zero.

ITU-T Rec. X.692 (03/2002) 115

ISO/IEC 8825-3:2003 (E)

24.3.7 The transform for the value "nodul o: n" is defined as follows: Let "i" be the original integer value, let the
transform be "nodul o: n". Let "j" be the result of applying "di vi de: n" followed by "mul ti ply: n" to "i". Then
"nodul o: n" applied to "i" is defined to be the same as applying "decrenent:j " to "i".

24.3.8 The transform for the value "subt ract : | ower - bound" shall only be used as the first of an ordered list of
transforms (and hence can never be used if the source is a composite). The source shall have a lower bound.

24.3.9 Each of these transforms is defined to be reversible if the source is a single value, not a composite, and if the
condition on the abstract value (to which it is being applied) listed in Table 6 is satisfied. It is also defined to be
reversible if the source is a composite and Table 6 specifies Always reversible as the condition.

Table 6 — Reversal of "INT-TO-INT" transforms

Transform Condition

i ncrement:n Always reversible
decrenent:n Always reversible

mul tiply:n Always reversible
divide:n Value is a multiple of n
negat e: val ue Always reversible
modul o: n Never reversible

subtract: | ower-bound gjways reversible

24.4 The bool-to-bool transform
24.4.1 The bool-to-bool transform uses the following encoding property:

&bool -t 0- bool CHO CE
{I ogi cal ENUVERATED({ not } }
DEFAULT | ogi cal : not

24.4.2 The syntax for the bool-to-bool transform shall be:
[BOOL- TO- BOOL [AS &bool -t o-bool]]
24.4.3 Both the source and result of this transform are boolean or a boolean composite.

24.4.4 1If the source is a boolean, the result is a boolean. If the source is a boolean composite, the result is a boolean
composite in which each element of the source has been transformed as specified in 24.4.5.

24.4.5 There is only one value for "BOOL- TO- BOOL", "AS | ogi cal : not ", which may be omitted. This transform
converts boolean TRUE to FALSE, and vice versa.

24.4.6 This transform is defined to be reversible for all abstract values.

24.5 The bool-to-int transform
24.5.1 The bool-to-int transform uses the following encoding property:

&bool -to-int ENUVERATED {true-zero, true-one}
DEFAULT true-one

24.5.2 The syntax for the bool-to-int transform shall be:
[BOOL- TO- I NT AS &bool -to-int]

24.5.3 The source for this transform is boolean or a boolean composite and the result is integer or an integer
composite. The integer result (and each element in the integer composite) has the value zero or one. The result has no
associated bounds.

24.5.4 If the source is a boolean, the result is an integer. If the source is a boolean composite, the result is an integer
composite in which each element of the source has been transformed as specified in 24.5.5.

116 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

24.5.5 The value "t rue-zero" of "BOOL- TO- | NT" produces integer 0 for TRUE and integer 1 for FALSE. The value
"t r ue- one" produces integer 1 for TRUE and integer 0 for FALSE.

24.5.6 This transform is defined to be reversible for all abstract values.

24.6 The int-to-bool transform

24.6.1 The int-to-bool transform uses the following encoding properties:

& nt-to-bool ENUMERATED { zero-true, zero-fal se}
DEFAULT zero-fal se,

& nt-to-bool-true-is | NTEGER OPTI ONAL,

& nt-to-bool -fal se-is | NTEGER OPTI ONAL

24.6.2 The syntax for the int-to-bool transform shall be:

[I NT- TO- BOOL
[AS & nt-to-bool]
[TRUE-1S & nt-to-bool-true-is]
[FALSE-1S &l nt-to-bool -fal se-is]]

24.6.3 The source for this transform is integer or an integer composite and the result is boolean or a boolean
composite.

24.6.4 Either one of "AS", "TRUE- | S" and "FALSE- | S" is set, or both "TRUE- | S" and "FALSE- | S" are set (and "AS" is
not set), or none are set. If none are set, then the default value for "AS" is assumed.

24.6.5 If "AS"is set (or is defaulted), then the value "zer o- t r ue" produces TRUE for the value zero and FALSE for all
non-zero values, and the value "zer o- f al se" produces FALSE for the value zero and TRUE for all non-zero values.

24.6.6 If "TRUE-1 S" only is set, all of the integer values for "TRUE- | S" produce TRUE and all other integer values
produce FALSE

24.6.7 1If "FALSE- | S" only is set, all of the integer values for "FALSE- | S" produce FALSE and all other integer values
produce TRUE.

24.6.8 If both "TRUE- | S" and "FALSE-1S" is set, then the integer values in "TRUE- | S" and "FALSE-| S" shall be
disjoint. In this case, it is an ECN specification or application error if abstract values which are not included in either
"TRUE- | S" or "FALSE- | S" are included in the source, and encoders shall not generate encodings for such values.

24.6.9 This transform is defined to be reversible if and only if both "TRUE- | S" and "FALSE- | S" are set, and they each
specify a single integer value.
24.7 The int-to-chars transform

24.7.1 The int-to-chars transform uses the following encoding properties:

& nt-to-chars-size Resul t Si ze DEFAULT vari abl e,
& nt-to-chars-plus BOOLEAN DEFAULT FALSE,
& nt -t o- chars- pad ENUMERATED

{spaces, zeros} DEFAULT zeros
24.7.2 The syntax for the int-to-chars transform shall be:

[I NT- TO CHARS
[SI ZE & nt-to-chars-size]
[PLUS- SI GN & nt -t o- char s- pl us]
[PADDI NG &i nt -t o- char s- pad]]

24.7.3 The definition of the type used in the int-to-chars transform is:

Resul t Size ::= I NTEGER {variable(-1), fixed-to-max(0)} (-1..MAX) -- (see 21.14)

24.7.4 The source for this transform is an integer or an integer composite, and the result is a characterstring or a
characterstring composite.

24.7.5 1If the source is an integer, the result is a characterstring. If the source is an integer composite, the result is a
characterstring composite in which each element of the source has been transformed as specified in 24.7.6 to 24.7.13.

24.7.6 "SI ZE", "PLUS- SI GN", and "PADDI NG' all have default values and can be omitted.

ITU-T Rec. X.692 (03/2002) 117

ISO/IEC 8825-3:2003 (E)

24.7.7 "SI ZE" specifies either:
a) a fixed size in characters for the resulting size (a positive value of "SI ZE"); or
b) that a variable length string of characters is to be produced (the value "vari abl e" of "SI ZE"); or

c) a fixed-size just large enough to contain the transform of all abstract values in the source class (the value
"fi xed-t o- max" of "SI ZE").

24.7.8 "SI ZE" shall not be set to "f i xed-t o- max" unless this is the first transform in an ordered set, and the source
class has both lower and upper bounds. This is synonymous with the specification of a positive value equal to the
smallest value needed to contain the transform of every abstract value within the bounds.

24.7.9 The integer value is first converted to a decimal representation with no leading zeros and with a pre-fixed "-"
(HYPHEN-MINUS) if it is negative. If, and only if, "PLUS- SI GN" is set to true, positive values have a "+" (PLUS
SIGN) pre-fixed to the digits.

24.7.10 The most significant digit shall be at the leading end of the characterstring.

24.7.11 If "SI ZE" is "vari abl e", then this is the resulting string of characters. In this case it is not an error to specify a
value for "PADDI NG', but the value is ignored.

24.7.12 If "SI ZE" is a positive value or "f i xed-t o- max", and the resulting string (in an instance of application of this
transform during encoding) is too large for the fixed size, then this is an ECN specification or application error, and
encoders shall not generate encodings for such abstract values.

24.7.13 If "SI ZE" is a positive value or "f i xed-t o- max", and the string is smaller than the fixed size, then it is padded
with either " " (SPACE) or "0" (DIGIT ZERO), determined by the value of "PADDI NG', pre-fixed to produce the
specified size.

24.7.14 This transform is defined to be reversible for all abstract values.

24.8 The int-to-bits transform
NOTE — An example of this transform is given in D.1.5.5.

24.8.1 The int-to-bits transform uses the following encoding properties:

& nt-to-bits-encoded-as ENUMERATED
{positive-int, twos-conplemnent}
DEFAULT twos- conpl enent

& nt-to-bits-unit Unit (1..MAX) DEFAULT bit,

& nt-to-bits-size Resul t Si ze DEFAULT vari abl e

24.8.2 The syntax for the int-to-chars transform shall be:
[INT-TO-BI TS
[AS & nt-to-bits-encoded- as]
[SIZE & nt-to-bits-size]
[MULTIPLE OF & nt-to-bits-unit]]

24.8.3 The definition of the types used in the int-to-bits transform are:

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
Resul t Size ::= I NTECER {variable(-1), fixed-to-max(0)} (-1..MAX) -- (see 21.14)

24.8.4 The source for this transform is an integer or an integer composite and the result is a bitstring or a bitstring
composite. There are no bounds associated with the result. The following clauses use the term resulting bitstring.

24.8.5 If the source is an integer, the result is the resulting bitstring. If the source is an integer composite, the result is
a bitstring composite in which each element of the source has been transformed to the resulting bitstring as specified in
24.5.5.

24.8.6 "AS" and "MULTI PLE OF" have default values and need not be set.

24.8.7 "SI ZE" has a default value and need not be set if the source is not a composite. It shall be set to a positive value
if the source is a composite.

118 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

24.8.8 "SI ZE" shall not be set to "f i xed-t o- max" unless this is the first transform in an ordered set in the syntax
defined in 19.4, and the source class has both lower and upper bounds. This is synonymous with the specification of a
positive value equal to the smallest value needed to contain the transform of every abstract value within the bounds.

NOTE —"S| ZE" cannot be set to "f i Xxed-t o- max" if the source is a transform composite.

24.8.9 "AS" selects the encoding of the integer as either a 2's-complement encoding or as a positive integer encoding.
The definition of these encodings is given in ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3.

24.8.10 The most significant bit shall be at the leading end of the bitstring.

24.8.11 The integer shall first be encoded into the minimum number of bits necessary to produce an initial bitstring.
This means that a positive integer encoding shall not have zero as the leading bit (unless there is a single zero bit in the
encoding), and a 2's-complement encoding shall not have two successive leading zero bits or two successive leading one
bits.

24.8.12 If "AS" is set to "posi tive-int", and the value to be transformed is negative, this is an ECN specification or
an application error and encoders shall not encode such values.

24.8.13 If "SI ZE" is "vari abl e", then the initial bitstring becomes the resulting bitstring. In this case it is not an error
to specify a value for "MULTI PLE OF", but the value is ignored.

NOTE — This clause cannot apply if the source is composite.
24.8.14 If "SI ZE" is a positive value, the size of the resulting bitstring shall be "MULTI PLE OF" multiplied by "SI ZE".

24.8.15 If "SI ZE" is "fixed-to-nmax", then the size of the resulting bitstring shall be the smallest multiple of
"MULTI PLE OF" that is large enough to receive the encoding of any abstract value of the class to which the transform is
applied.

NOTE — This clause cannot apply if the source is composite.

24.8.16 If the initial bitstring (in an instance of application of this transform during encoding) is too large for the fixed
size, then this is an ECN specification or an application error and encoders shall not encode such values.

24.8.17 If the initial bitstring is smaller than the specified size, then for a positive integer encoding it shall have zero
bits prefixed to produce the resulting bitstring. If the encoding is 2's-complement, then it shall have bits prefixed equal
in value to the original leading bit to produce the resulting bitstring.

24.8.18 This transform is defined to be reversible for all abstract values. This transform produces a self-delimiting
bitstring if and only if "SI ZE" is not "vari abl e" and the source is not composite. A composite result is never self-
delimiting.
24.9 The bits-to-int transform
24.9.1 The bits-to-int transform uses the following encoding property:
&bi t s-to0-int-decoded- assum ng ENUVERATED
{positive-int, twos-conplenent}
DEFAULT twos- conpl enent
24.9.2 The syntax for the bits-to-int transform shall be:

[BITS-TO I NT
[AS &bits-to-int-decoded-assun ng]]

24.9.3 The source for this transform is a bitstring or a bitstring composite and the result is an integer or an integer
composite. There are no bounds associated with the result.

24.9.4 If the source is a bitstring, the result is an integer. If the source is a bitstring composite, the result is an integer
composite in which each integer is the result of the specification in 24.9.5.

24.9.5 The integer value shall be produced by interpreting the bits as 2's-complement or as a positive integer encoding,
as specified in ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3. The value of "AS" (or its default value if not set)
determines the encoding to be assumed.

24.9.6 This transform shall not be used where reversible transforms are required.

24.10 The char-to-bits transform

24.10.1 The char-to-bits transform uses the following encoding properties:

ITU-T Rec. X.692 (03/2002) 119

ISO/IEC 8825-3:2003 (E)

&char -t o- bi t s- encoded- as ENUVERATED
{i s010646, conpact, mapped}
DEFAULT conpact,

&Char-to-bits-chars Uni versal String (SIZE(1))
ORDERED OPTI ONAL,

&Char -t o- bi t s-val ues Bl T STRI NG ORDERED OPTI ONAL,

&char-to-bits-unit Unit (1..MAX) DEFAULT bit,

&char-to-bits-size Resul t Si ze DEFAULT vari abl e

24.10.2 The syntax for the char-to-bits transform shall be:

[CHAR-TO- BI TS
[AS &char -t o-bits-encoded- as]
[CHAR- LI ST &Char -t o-bits-chars]
[BI TS- LI ST &Char -t o- bi ts-val ues]
[SI ZE &char-to-bits-size]
[MULTI PLE OF &char-to-bits-unit]]

24.10.3 The definition of the types used in the char-to-bits transform are:

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)
Resul t Size ::= I NTECER {variable(-1), fixed-to-max(0)} (-1..MAX) -- (see 21.14)

24.10.4 The source for this transform is a single character from either:
a) the specification of an encoding for the characterstring category (see 23.4.2.1); or

b) asingle character composite.
and the result is a bitstring in case a) and a bitstring composite in case b).

24.10.5 The bitstring composite in case b) shall be the ordered sequence of bitstrings produced by the following
transformations applied to each element of the source bitstring composite. It is an ECN specification error if the
"ZERO PATTERN'" and the "ONE- PATTERN" have different sizes.

24.10.6 The source for this transform is a single character or a single character composite. If the source is a single
character, the result is a bistring. If the source is a single character composite, the result is a bitstring composite.

24.10.7 Where the source is a composite, the resulting composite is determined by applying the following specification
to all elements of the source composite to form the result composite. It is an ECN specification error if this transform is
applied to a composite with "AS" set to "mapped" and the size of the bitstrings in the "Bl TS- LI ST" are not all the same.

24.10.8 Where the following text refers to a possible "effective permitted alphabet constraint”, such a constraint exists
if and only if the transform is the first in an ordered list used in 23.4 and the class to which the encoding object is
applied has an effective permitted alphabet constraint.

NOTE — This can only be the case if the class to which the transform is applied is part of an implicitly or explicitly generated
structure. This clause can never apply to a composite, whose elements never have effective permitted alphabet constraints.
24.10.9 "AS", "SI ZE" and "MULTI PLE OF" all have default values and need not be set. "CHAR- LI ST" and "BI TS- LI ST"

are only used if "AS" is set to "mapped", in which case their presence is mandatory, and they shall then contain at least
one element in the ordered list.

24.10.10ECN supports only characters in the ISO/IEC 10646-1 character set. Where ASN.1 types such as
"GeneralString" are in use, characters outside of this character set can in theory appear. Such characters are not
supported by this transform.

24.10.111If "AS" is "mapped", then the transform is specified by the values of "CHAR- LI ST" and "Bl TS- LI ST", both of
which shall be specified, and the values of "MULTI PLE OF" and "SI ZE" are ignored. The transform is specified in
24.10.11.1 to 24.10.11.5.

24.10.11.1 "CHAR- LI ST" and "BI TS- LI ST" are respectively an ordered list of single characters and of bitstring values.
(These parameters are ignored if "AS" is not set to "mapped".)

24.10.11.2 There shall be an equal number of values in each list, and all character values in "CHAR- LI ST" shall be
distinct.

24.10.11.3 The transform of a character in "CHAR- LI ST" is the bitstring specified in the corresponding position in
"BI TS- LI ST".

120 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

24.10.11.4If in an instance of application of this transform a character is to be transformed that is not in the
"CHAR- LI ST", this is an ECN specification or an application error.

NOTE - In general it will only be possible for a tool to check for this error at encode time, as restrictions on possible abstract
values may not be formally present in the ASN.1 specification.

24.10.11.5 In this case ("AS" set to "mapped"), the transform is defined to be reversible (for all abstract values) if and
only if the set of all bitstring values in "Bl TS- LI ST" are distinct, otherwise it shall not be used where a reversible
transform is required. The result is self-delimiting if the bitstring values in "Bl TS- LI ST" are self-delimiting (see
3.2.41). A composite result is never self-delimiting.

24.10.12If "AS" is "i s010646", the transform is specified in 24.10.12.1 to 24.10.12.5.

24.10.12.1 The character is first converted to an integer with the numerical value specified in ISO/IEC 10646-1.
NOTE - ISO/IEC 10646-1 includes the so-called ASCII control characters, which have positions in row 1.

24.10.12.2 If the character is from a character string that has an associated effective permitted alphabet constraint (see
24.10.8), then the integer has effective size constraints just sufficient to contain the numerical values of all characters in
the effective permitted alphabet.

24.10.12.3 If there is no effective permitted alphabet constraint, then the integer has an associated effective size
constraint of 0..32767.

24.10.12.4 This integer value is then converted to bits using the transform:

INT-TO-BITS -- (see 24.8)
AS positive-int
S| ZE <si ze>
MULTI PLE OF <nmul ti pl e- of >

where "<size>" is the value of "SI ZE" and "<multiple-of>" is the value of "MULTI PLE OF" for the char-to-bits
transform. ("SI ZE" and "MULTI PLE OF" take their default values if not set.)

24.10.12.5 In this case ("AS" set to "i s010646"), the transform is defined to be reversible for all abstract values. It
produces a self-delimiting string of bits if and only if "SI ZE" is not "variable". A composite result is never self-
delimiting.

24.10.131If "AS" is "conpact ", then it is an ECN specification error if there is no effective permitted alphabet constraint,
otherwise the transform is specified in 24.10.13.1 to 24.10.13.4.

24.10.13.1 All characters in the effective permitted alphabet are placed in canonical order using their ISO/IEC 10646-1
value, lowest value first. The first in the list is then assigned the integer value zero, the next one, and so on.

24.10.13.2 If the effective permitted alphabet contains "n" characters, then the integer has an effective size constraint of
0..n-1.

24.10.13.3 This integer is then converted to bits using the transform:

INT-TO-BITS -- (see 24.8)
AS positive-int
S| ZE <si ze>
MULTI PLE OF <mul ti pl e- of >

where "<size>" is the value of "SI ZE" and "<multiple-of>" is the value of "MULTI PLE OF" for the char-to-bits
transform. ("SI ZE" and "MULTI PLE OF" take their default values if not set.)
NOTE — The PER encoding of character string types uses the equivalent of "conpact " only if the application of this algorithm

reduces the number of bits required to encode characters (using "f i xed-t 0- max"). This degree of control is not possible in this
version of this Recommendation | International Standard.

24.10.13.4 In this case ("AS" set to "conpact "), the transform is defined to be reversible for all abstract values. It
produces a self-delimiting string of bits if and only if "SI ZE" is not "vari abl e". A composite result is never self-
delimiting.

24.11 The bits-to-char transform
24.11.1 The bits-to-char transform uses the following encoding properties:
&bi t s-t 0- char - decoded- assum ng ENUVERATED
{is010646, mapped}

DEFAULT i s010646,
&Bi t s-t o- char - val ues BI T STRI NG ORDERED OPTI ONAL,

ITU-T Rec. X.692 (03/2002) 121

ISO/IEC 8825-3:2003 (E)

&Bi ts-to-char-chars Uni versal String (SIZE(1))
CRDERED OPTI ONAL

24.11.2 The syntax for the bits-to-char transform shall be:

[BI TS- TO CHAR
[AS &bits-to-char-decoded-assum ng]
[BI TS-LI ST &Bits-to-char-val ues]
[CHAR- LI ST &Bits-to-char-chars]]

24.11.3 The source for this transform is a bitstring or a bitstring composite. If the source is a bitstring, the result is a
single character. If the source is a bitstring composite, the result is a single character composite.

24.11.4 If the source is a bitstring composite, then the resulting single character composite is an ordered list of single
characters resulting from the transformation of each of the elements of the bitstring composite.

24.11.5 If "AS" is "i s010646", then the bitstring shall be interpreted as a positive integer encoding which contains the
ISO/IEC 10646-1 numerical value of a character. It is an ECN specification error if the integer value exceeds 32767.

24.11.6 If "AS" is "mapped", then the transform is specified by the values of "CHAR- LI ST" and "BITS-LIST". The
transform is defined in 24.11.6.1 to 24.11.6.5.

24.11.6.1 "CHAR- LI ST" and "BI TS- LI ST" are respectively an ordered list of single characters and of bitstring values.
(These parameters are ignored if "AS" is not set to "mapped".)

24.11.6.2 There shall be an equal number of values in each list, and all character values and all bitstring values in the list
shall be distinct.

24.11.6.3 The transform of a bitstring in the "Bl TS- LI ST" is the character specified in the corresponding position in the
"CHAR- LI ST".

24.11.6.4 If in an instance of application of this transform a bitstring is to be transformed that is not in the "Bl TS- LI ST",
this is an ECN specification or an application error.

NOTE - In general it will only be possible for a tool to check for this error at encode time, as restrictions on possible abstract
values may not be formally present in the ASN.1 specification.

24.11.6.5 The transform is defined to be reversible for all abstract values.

24.12 The bit-to-bits transform
24.12.1 The bit-to-bits transform uses the following encoding properties:

&bit-to-bits-one Non- Nul | - Pattern DEFAULT bits

:'1' B,
&bit-to-bits-zero Non- Nul | -Pattern DEFAULT bits:'0'B

24.12.2 The syntax for the bit-to-bits transform shall be:

[BIT-TOBITS
[ZERO PATTERN &bi t-to-bits-zero]
[ONE- PATTERN &bi t-t o-bits-one]]

24.12.3 The definition of the type used in the bit-to-bits transform is:

Non-Nul | -Pattern ::= Pattern
(ALL EXCEPT (bits:''B | octets:'"'H| char8:"" | char16:"" |
char32:"")) -- (see 21.10.2)

24.12.4 The source for this transform is a single bit from either:
a) the specification of an encoding for the bitstring category (see 23.2); or
b) a bitstring composite with a unit of 1 bit.

The result is a bitstring in case a) and a bitstring composite in case b).

24.12.5 The bitstring composite in case b) shall be the ordered sequence of bitstrings produced by the following
transformations applied to each element of the source bitstring composite. It is an ECN specification error if the
"ZERO PATTERN'" and the "ONE- PATTERN" have different sizes.

24.12.6 At most one of "ZERO- PATTERN" and "ONE- PATTERN" shall be "di f f er ent : any".
NOTE — A value of "di f f er ent : any" here means a pattern that is not the same as the other pattern, but is the same length.

24.12.7 The "any- of - | engt h" alternative shall not be used for either "ZERO- PATTERN" or "ONE- PATTERN".

122 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

24.12.8 If the bit is set to zero, the result is the "ZERO PATTERN'. If the bit is set to one, the result is the
"ONE- PATTERN".

24.12.9 It is an ECN specification error if "ZERO- PATTERN" and "ONE- PATTERN" are the same, or if one is an initial
sub-string of the other.

24.12.10This transform is defined to be reversible for all abstract values and the result is self-delimiting unless the
transform is applied to a composite. A composite result is never self-delimiting.

24.13 The bits-to-bits transform
24.13.1 The bits-to-bits transform uses the following encoding properties:

&Sour ce- val ues BI T STRI NG ORDERED,
&Resul t - val ues BI T STRI NG ORDERED

24.13.2 The syntax for the bits-to-bits transform shall be:

[BITS-TO-BI TS
SQOURCE- LI ST &Sour ce-val ues
RESULT- LI ST &Resul t - val ues]

24.13.3 The source for this transform is either a bitstring or a bitstring composite. If the source is a bitstring the result
is a bitstring. If the source is a bitstring composite the result is a bitstring composite.

24.13.4 If the source is a bitstring composite, then the resulting bitstring composite is the ordered list of bitstrings
obtained by applying the following specification to each bitstring in the source.

24.13.5 "SI ZE" and "MULLTIPLE OF" both have default values and need not be set. "SOURCE-LIST" and
"RESULT- LI ST" are required, and shall contain at least one element in the ordered list.

24.13.6 The transform is specified by the values of "SOURCE- LI ST" and "RESULT- LI ST".

24.13.7 There shall be an equal number of bitstring values in each list, and all bitstring values in "SOURCE- LI ST" shall
be distinct.

24.13.8 The transform of a bitstring in "SOURCE- LI ST" is the bitstring specified in the corresponding position in
"RESULT- LI ST".

24.13.9 If this transform is applied to a composite, all bitstrings in the "RESULT- LI ST" shall have the same size.

24.13.101If, in an instance of application of this transform, a source bitstring is not in the "SOURCE- LI ST", this is an
ECN specification or an application error.

NOTE — In general it will only be possible for a tool to check for this error at encode time, as restrictions on possible abstract
values may not be formally present in the ASN.1 specification.

24.13.11The transform is defined to be reversible (for all abstract values) if and only if the set of all bitstring values in
"RESULT- LI ST" are distinct, otherwise it shall not be used where a reversible transform is required. The result is self-
delimiting if the bitstring values in "RESULT- LI ST" are distinct and self-delimiting (see 3.2.41) and the transform is
applied to a bitstring. A composite result is never self-delimiting.

24.14 The chars-to-composite-char transform
24.14.1 The chars-to-composite-char transform converts a characterstring to a single character composite.
24.14.2 The syntax for the chars-to-composite-char transform shall be:

[CHARS- TO- COVPOSI TE- CHAR]
24.14.3 The source of this transform is a characterstring and the result is a single character composite.
24.14.4 The single character composite is an ordered list of the characters in the source characterstring.

24.14.5 This transform is defined to be reversible for all abstract values.

24.15 The bits-to-composite-bits transform

24.15.1 The bits-to-composite-bits transform converts a bitstring to a bitstring composite, where each bitstring element
has the same (known) size.

ITU-T Rec. X.692 (03/2002) 123

ISO/IEC 8825-3:2003 (E)

24.15.2 The bits-to-composite-bits transform uses the following encoding properties:
&bits-to-conposite-bits-unit Unit (1..MAX) DEFAULT bit
24.15.3 The syntax for the bits-to-composite-bits transform shall be:

[BI TS- TO COWCSI TE- BI TS
[UNIT &bits-to-conposite-bits-unit]]

24.15.4 The definition of the type used in the bits-to-composite-bits transform is:

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),
dword32(32)} (0..256) -- (see 21.1)

24.15.5 The source of this transform is a bitstring and the result is a bitstring composite of size "UNI T".

24.15.6 The bitstring composite of size "UNI T" is an ordered list of bitstrings each of which is of size "UNI T". The first
bitstring in the composite is the first "UNI T" bits from the source bitstring. The second is the next "UNI T" bits, and so on.
If the source bitstring is not a multiple of "UNI T" bits, this is an ECN specification or application error.

24.15.7 This transform is defined to be reversible for all abstract values.

24.16 The octets-to-composite-bits transform
24.16.1 The octets-to-composite-bits transform converts an octetstring to a bitstring composite of size 8 bits.
24.16.2 The syntax for the octetets-to-composite-bits transform shall be:
[OCTETS- TO- COVPCS| TE- Bl TS]
24.16.3 The source of this transform is an octetstring and the result is a bitstring composite of size 8 bits.

24.16.4 The bitstring composite of size 8 is an ordered list of the bitstrings corresponding to the octets in the source
octetstring.

24.16.5 This transform is defined to be reversible for all abstract values.

24.17 The composite-char-to-chars transform
24.17.1 The composite-char-to-chars transform converts a single character composite to a characterstring.
24.17.2 The syntax for the composite-char-to-chars transform shall be:
[COVPCS| TE- CHAR- TO- CHARS]
24.17.3 The source of this transform is a single character composite and the result is a characterstring.

24.17.4 The characterstring is formed from the ordered list of characters present in the (source) single character
composite.

24.17.5 This transform is defined to be reversible for all abstract values.

24.18 The composite-bits-to-bits transform
24.18.1 The composite-bits-to-bits transform converts a bitstring composite of a known unit size to a bitstring.
24.18.2 The syntax for the composite-bits-to-bits transform shall be:
[COWPCSI TE- BI TS- TO- BI TS]
24.18.3 The source of this transform is a bitstring composite and the result is a bitstring.
24.18.4 The bitstring is formed from the ordered list of bitstrings present in the (source) bitstring composite.

24.18.5 This transform is defined to be reversible for all abstract values. The result bitstring is not self-delimiting.

NOTE - This transform is reversible because the units used in its generation are specified in the transform that produced the
bitstring composite, and are associated with that composite.

124 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

24.19 The composite-bits-to-octets transform

24.19.1 The composite-bits-to-octets transform converts a bitstring composite of unit size 8 to an octetstring. It is an
ECN specification error if this is applied to a bitstring composite that has a unit size which is not 8.

24.19.2 The syntax for the composite-bits-to-octets transform shall be:
[COWPCSI TE- BI TS- TO- OCTETS]
24.19.3 The source of this transform is a bitstring composite and the result is an octetstring.
24.19.4 The octetstring is formed from the ordered list of bitstrings present in the (source) bitstring composite.

24.19.5 This transform is defined to be reversible for all abstract values.

25 Complete encodings and the #QUTER class

If there is no encoding object of the #OUTER class in the combined encoding object set being applied to a type in the
ELM, then the encoder and decoder shall assume an encoding object of this class in which all encoding properties have
their default values.

25.1 Encoding properties, syntax and purpose for the #OUTER class
25.1.1 The syntax for defining encoding objects of the #OUTER class is defined as:
#OUTER :: = ENCCDI NG- CLASS {

-- Alignnent point
&al i gnment - poi nt ENUVMERATED
{unchanged, reset } DEFAULT reset,

-- Paddi ng

&post - paddi ng- uni t Unit (1..MAX) DEFAULT octet,

&post - paddi ng Paddi ng DEFAULT zer o,

&post - paddi ng- pattern Non- Nul | - Pattern (ALL EXCEPT different: any)

DEFAULT bits:'0'B,

-- Bit reversal specification (see 22.12)
&bi t-reversal Rever sal Speci fication
DEFAULT no-reversal,

-- Added bits action

&added-bits ENUVERATED
{hard-error, signal-application,
silently-ignore, next-value}
DEFAULT hard-error

} W TH SYNTAX {

[ALI GNIVENT &al i gnrent - poi nt]
[PADDI NG
[MULTI PLE OF &post - paddi ng-uni t]
[PCST- PADDI NG &post - paddi ng
[PATTERN &post - paddi ng- pattern]]]
[Bl T- REVERSAL &bit-reversal]

[ADDED BI TS DECODI NG &added- bi t s]

}
25.1.2 The definition of the types used in the #OUTER specification are:

Unit ::= | NTEGER

{repetitions(0), bit(1), nibble(4), octet(8), wordl6(16),

dwor d32(32)} (0..256) -- (see 21.1)

Paddi ng ::= ENUMERATED {zero, one, pattern, encoder-option} -- (see 21.9)
Non-Nul | -Pattern ::= Pattern

(ALL EXCEPT (bits:''B | octets:'"'H | char8:"" | char16:"" |

char32:"")) -- (see 21.10.2)

ITU-T Rec. X.692 (03/2002) 125

ISO/IEC 8825-3:2003 (E)

25.1.3 Encoding objects of the #OUTER class specify encoder and decoder actions in relation to the entire encoding of
a type which is encoded by either:

a) application of an encoding in the ELM; or

b) application of an encoding to a contained type.
25.1.4 Three independent specifications can be made (see 25.1.5 to 25.1.7).

25.1.5 The "ALI GNMENT" specification is applicable only for a contained type, and determines whether the alignment
point is to be reset to the head of the container or is to be the same as that in use for the encoding of the container.

25.1.6 The "PADDI NG' specification determines that the entire encoding is to be padded with trailing bits to make the
number of bits from the alignment point an integral multiple of some unit.

25.1.7 The "ADDED BI TS DECCDI NG' specification is applicable only to decoders, and determines the action to be
taken if there are further bits in the PDU after decoding according to encoding specifications has been completed.

NOTE — This provision is primarily to provide a simple mechanism for extensibility without use of the ASN.1 extensibility
marker. A later version of this Recommendation | International Standard is expected to give enhanced support for extensibility.

25.1.8 "ALI GNVENT", "PADDI NG', and "ADDED BI TS DECCODI NG' all take their default values if not set or if there is no
encoding object of class #OUTER in the combined encoding object set.

NOTE — The default values are those used by the encoding object of class #OUTER for PER basic unaligned.

25.2 Encoder actions for #OUTER

25.2.1 If "ALI GNMENT" is "unchanged", then the alignment point used in encoding a contained type shall be the
alignment point used in encoding the container.

25.2.2 If"ALI GNMENT" is "r eset ", then the alignment point used in encoding a contained type shall be the start of the
encoding of that type.

25.2.3 If "PADDI NG' is set, then the encoder shall add bits in accordance with the value of "PADDI NG' and "PATTERN'
to make the number of bits from the alignment point a multiple of "MULTI PLE OF" units. "PATTERN" shall be replicated
and truncated as necessary.

25.2.4 The encoder shall diagnose an ECN specification or application error if the encoding is for a type in a contents
constraint on an octetstring, and the encoding of the type (after all specified "PADDI NG' actions) is not an integral
multiple of eight bits.

25.2.5 1If bit-reversal is set, the encoder actions specified in 22.12 shall be applied using the value of "MULTI PLE OF"
specified for (or defaulted in) "PADDI NG'.

25.2.6 The encoder shall ignore "ADDED Bl TS DECODI NG'.

25.3 Decoder actions for #QUTER

25.3.1 If bit-reversal is set, the decoder actions specified in 22.12 shall be applied using the value of "MULTI PLE OF"
specified for (or defaulted in) "PADDI NG'.

25.3.2 If "ALI G\NMENT" is "unchanged", then the alignment point used in encoding a contained type shall be the
alignment point used in encoding the container.

25.3.3 If "ALI GNVENT" is "reset", then the alignment point used in encoding a contained type shall be the start of the
encoding of that type.

25.3.4 The decoder shall determine the bits added by "PADDI NG' (if any), and shall silently ignore the added bits, no
matter what their value.

25.3.5 If the PDU (or the container of a contained type) contains further bits after the end of the encoding, then the
decoder shall take the following actions:

a) if "ADDED BI TS DECODI NG'is "har d- err or ": diagnose an encoder error;

b) If "ADDED BITS DECODI NG' is "signal -application": ignore all further bits and signal the
application that there may be critical extensions to the protocol;

c) If"ADDED BI TS DECODI NG'is "si | ent| y-i gnore": ignore all further bits;

d) If "ADDED BI TS DECODI NG' is "next - val ue": cease decoding and expect the application to initiate
decoding of a new value from the remaining bits.

126 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

Annex A

Addendum to ITU-T Rec. X.680 | ISO/IEC 8824-1

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the modifications that are to be applied when productions and/or clauses from ITU-T Rec.
X.680 | ISO/IEC 8824-1 are referenced in this Recommendation | International Standard.

A.l Exports and imports clauses

The productions "Assignedldentifier”, "Symbol" and "Reference" of 12.1, as well as subclauses 12.12 and 12.15, of
ITU-T Rec. X.680 | ISO/IEC 8824-1 are modified as follows:

12.1 Assignedldentifier ::= Definitiveldentifier |

empty
Symbol ::=
Reference
| BuiltinEncodingClassReference
| ParameterizedReference
Reference ::=

encodingclassreference
| ExternalEncodingClassReference
| encodingobjectreference
| encodingobjectsetreference

NOTE 1 — The production "AssignedIdentifier" is changed because "valuereference"s can neither be defined nor imported into
ELM or EDM modules.

NOTE 2 — "BuiltinEncodingClassReference" can only be used as a "Symbol" in an imports clause. The use of production
"ExternalEncodingClassReference" in "Reference" is explained in 14.11.

12.12 When the "SymbolsExported" alternative of "Exports" is selected, then each "Symbol" in "SymbolsExported"
shall satisfy one and only one of the following conditions:
a) itis defined in the module from which it is being exported; or
b) it appears exactly once in the "SymbolsImported" alternative of "Imports" in the module from which it is
being exported.
12.15 When the "SymbolsImported" alternative of "Imports" is selected:
a) Each "Symbol" in "SymbolsFromModule" shall either:

1) be defined in the body of the module denoted by the "GlobalModuleReference" in
"SymbolsFromModule"; or

2) be present precisely once in the imports clause of the module denoted by the
"GlobalModuleReference" in "SymbolsFromModule".

NOTE - This does not prohibit the same symbol name defined in two different modules from being imported into
another module. However, if the same "Symbol" name appears more than once in the imports clause of module
"A", that "Symbol" name cannot be exported from "A" for import to another module "B".

b) All the "SymbolsFromModule" in the "SymbolsFromModuleList" shall include occurrences of
"GlobalModuleReference" such that:

i) the "modulereference” in them are all different from each other (whether they are ASN.1, or EDM
modules) and from the "modulereference" associated with the referencing module; and

ii) the "Assignedldentifier", when non-empty, denotes object identifier values which are all different
from each other and from the object identifier value (if any) associated with the referencing module.

A2 Addition of REFERENCE
NOTE — This modification is introduced for the sole purpose of clause 23.

The production "Type" in ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.1, is modified as follows:

Type ::=
BuiltinType
| ReferencedType
| ConstrainedType

ITU-T Rec. X.692 (03/2002) 127

ISO/IEC 8825-3:2003 (E)

| REFERENCE
A3 Notation for character string values

The production "CharsDefn" of ITU-T Rec. X.680 | ISO/IEC 8824-1, 37.8, is modified as follows:

CharsDefn ::=
cstring
| Quadruple
| Tuple
| AbsoluteCharReference

AbsoluteCharReference ::=
Moduleldentifier

"nan

valuereference

The "AbsoluteCharReference" is a fully-qualified name which references a character string value (of type | A5St ri ng or
BVPSt ri ng) defined in the "ASNL- CHARACTER- MODULE" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 38.1).

128 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

Annex B

Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the modifications that are to be applied when productions and/or clauses from ITU-T Rec.
X.681 | ISO/IEC 8824-2 are referenced in this Recommendation | International Standard.

B.1 Definitions
The following definitions are added to ITU-T Rec. X.681 | ISO/IEC 8824-2, 3.4:
encoding class field: A field which contains an arbitrary encoding class.
encoding class field type: A type specified by reference to some type field of an encoding object class.

encoding object field: A field which contains an encoding object of some specified encoding class. Such a
field is either of fixed-class or of variable-class. In the former case, the class of the encoding object is fixed by
the field specification. In the latter case, the class of the encoding object is contained is some (specific)
encoding class field of the same encoding object.

encoding object set field: A field which contains a set of encoding objects of some specified encoding class.

fixed-type ordered value list field: A field which contains an ordered (possibly empty) list of values of some
specified type.

ordered encoding object list field: A field which contains an ordered non-empty list of encoding objects of
some specified encoding class.

reference field: A field which contains a reference to an encoding structure field (see also 17.5.15).

B.2 Additional lexical items
NOTE - This modification is introduced for the sole purpose of clause 23.

The following definitions are added to ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 7:
B.2.1 Ordered value list field references
Name of item — orderedvaluelistfieldreference

An "orderedvaluelistfieldreference" shall consist of an ampersand ("&") immediately followed by a sequence of
characters as specified for a "typereference" in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.2.

B.2.2 Ordered encoding object list field references
Name of item — orderedencodingobjectlistfieldreference

An "orderedencodingobjectlistfieldreference” shall consist of an ampersand ("&") immediately followed by a sequence
of characters as specified for an "objectsetreference" in ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.3.

B.2.3 Encoding class field references
Name of item — encodingclassfieldreference

An "encodingclassfieldreference" shall consist of an ampersand ("&'") immediately followed by a sequence of characters
as specified for an "encodingclassreference" in 8.3.

B.3 Addition of "ENCODING-CLASS"
NOTE - This modification is introduced for the sole purpose of clause 23.

Replace the reserved word "CLASS" with "ENCODING-CLASS" in ITU-T Rec. X.681 | ISO/IEC §824-2, 9.3.

B.4 FieldSpec additions
NOTE - This modification is introduced for the sole purpose of clause 23.

ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.4, is modified as follows:
FieldSpec ::=

ITU-T Rec. X.692 (03/2002) 129

ISO/IEC 8825-3:2003 (E)

FixedTypeValueFieldSpec
| FixedTypeValueSetFieldSpec
| FixedTypeOrderedValueListFieldSpec
| FixedClassEncodingObjectFieldSpec
| VariableClassEncodingObjectFieldSpec
| FixedClassEncodingObjectSetFieldSpec
| FixedClassOrderedEncodingObjectListFieldSpec
| EncodingClassFieldSpec

B.5 Fixed-type ordered value list field spec
NOTE - This modification is introduced for the sole purpose of clause 23.

A "FixedTypeOrderedValueListFieldSpec" specifies that the field is a fixed-type ordered value list field (see B.1 of this
Recommendation | International Standard):

FixedTypeOrderedValueListFieldSpec ::=
orderedvaluelistfieldreference
DefinedType
ORDERED
FixedTypeOrderedValueListOptionalitySpec ?

FixedTypeOrderedValueListOptionalitySpec ::= OPTIONAL | DEFAULT OrderedValueList

The name of the field is "orderedvaluelistfieldreference". The "DefinedType" references the type of values contained in
the field. The "FixedTypeOrderedValueListOptionalitySpec", if present, specifies that the field may be unspecified in an
encoding object definition, or, in the "DEFAULT" case, that omission produces the following "OrderedValueList" (see
ITU-T Rec. X.680 | ISO/IEC 8824-1, 25.3), all of whose values shall be of "DefinedType".

B.6 Fixed-class encoding object field spec
NOTE — This modification is introduced for the sole purpose of clause 23.

A "FixedClassEncodingObjectFieldSpec" specifies that the field is a fixed-class encoding object field (see B.1 of this
Recommendation | International Standard):

FixedClassEncodingObjectFieldSpec ::=
objectfieldreference
DefinedOrBuiltinEncodingClass
EncodingObjectOptionalitySpec?

EncodingObjectOptionalitySpec ::= OPTIONAL | DEFAULT EncodingObject

The name of the field is "objectfieldreference". The "DefinedOrBuiltinEncodingClass" references the encoding class of
the encoding object contained in the field (which may be the "EncodingClass" currently being defined). The
"EncodingObjectOptionalitySpec", if present, specifies that the field may be unspecified in an encoding object
definition, or, in the DEFAULT case, that omission produces the following "EncodingObject" (see 17.1.5 of this
Recommendation | International Standard) which shall be of the "DefinedOrBuiltinEncodingClass".

B.7 Variable-class encoding object field spec

A "VariableClassEncodingObjectFieldSpec" specifies that the field is a variable-class encoding object field (see B.1 of
this Recommendation | International Standard):

VariableClassEncodingObjectFieldSpec ::=
objectfieldreference
encodingclassfieldreference
EncodingObjectOptionalitySpec?

The name of the field is "objectfieldreference". The "encodingclassfieldreference" references an encoding class field of
the encoding class being specified. The "EncodingObjectOptionalitySpec", if present, specifies that the encoding object
may be omitted in an encoding object definition, or, in the DEFAULT case, that omission produces the following
"EncodingObject". The "EncodingObjectOptionalitySpec" shall be such that:
a) if the type field denoted by the "encodingclassfieldreference" has an "EncodingClassOptionalitySpec" of
OPTI ONAL, then the "EncodingObjectOptionalitySpec" shall also be OPTI ONAL; and
b) if the "EncodingObjectOptionalitySpec" is "DEFAULT EncodingObject", then the encoding class field
denoted by the "encodingclassfieldreference" shall have an "EncodingClassOptionalitySpec" of "DEFAULT
DefinedOrBuiltinEncodingClass", and "EncodingObject" shall be an encoding object of that class.

B.8 Fixed-class encoding object set field spec
NOTE — This modification is introduced for the sole purpose of clause 23.

130 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

A "FixedClassEncodingObjectSetFieldSpec" specifies that the field is a fixed-class encoding object set field (see B.1 of
this Recommendation | International Standard):

FixedClassEncodingObjectSetFieldSpec ::=
objectsetfieldreference
DefinedOrBuiltinEncodingClass
EncodingObjectSetOptionalitySpec?

EncodingObjectSetOptionalitySpec ::= OPTIONAL | DEFAULT EncodingObjectSet

The name of the field is "objectsetfieldreference". The "DefinedOrBuiltinEncodingClass" references the class of the
encoding objects contained in the field. The "EncodingObjectSetOptionalitySpec", if present, specifies that the field may
be unspecified in an encoding object definition, or, in the DEFAULT case, that omission produces the following
"EncodingObjectSet" (see clause 18), all of whose objects shall be of "DefinedOrBuiltinEncodingClass".

B.9 Fixed-class ordered encoding object list field spec
NOTE - This modification is introduced for the sole purpose of clause 23.

A "FixedClassOrderedEncodingObjectListFieldSpec" specifies that the field is a fixed-class ordered encoding object list
field (see B.1 of this Recommendation | International Standard):

FixedClassOrderedEncodingObjectListFieldSpec ::=
orderedencodingobjectlistfieldreference
DefinedOrBuiltinEncodingClass
ORDERED
OrderedEncodingObjectListOptionalitySpec?

OrderedEncodingObjectListOptionalitySpec ::= OPTIONAL | DEFAULT OrderedEncodingObjectList

The name of the field is "orderedencodingobjectlistfieldreference". The "DefinedOrBuiltinEncodingClass" references
the class of the encoding objects contained in the field. The "OrderedEncodingObjectListOptionalitySpec", if present,
specifies that the field may be unspecified in an encoding object definition, or, in the DEFAULT case, that omission
produces the following "OrderedEncodingObjectList" (see B.11 of this Recommendation | International Standard), all of
whose objects shall be of "DefinedOrBuiltinEncodingClass".

B.10 Encoding class field spec

This modification is introduced for the sole purpose of clause 23.

An "EncodingClassFieldSpec" specifies that the field is an encoding class field (see B.1 of this Recommendation |
International Standard):

EncodingClassFieldSpec ::=
encodingclassfieldreference
EncodingClassOptionalitySpec?

EncodingClassOptionalitySpec ::= OPTIONAL | DEFAULT DefinedOrBuiltinEncodingClass

The name of the field is "encodingclassfieldreference". If the "EncodingClassOptionalitySpec" is absent, all encoding
object definitions for that class are required to include a specification of an encoding class for that field. If OPTI ONAL is
present, then the field can be left undefined. If DEFAULT is present, then the following
"DefinedOrBuiltinEncodingClass" provides the default setting for the field if it is omitted in a definition.

B.11 Ordered value list notation
OrderedValueList ::="{" Value "," +"}"

The "OrderedValueList" is an ordered list of one or more values of the governing type. It is used when the application
applies semantics to the order of values in the list.

A value list can only be specified by in-line notation (which is governed by a type field, a fixed-type value set field, or a fixed-
type ordered value list field).

B.12 Ordered encoding object list notation
OrderedEncodingObjectList ::= "{"" EncodingObject "," + "}"

The "OrderedEncodingObjectList" is an ordered list of one or more encoding objects of the governing class. It is used
when the application applies semantics to the order of encoding objects in the list.

Example: A list of #TRANSFORMencoding objects is applied in the stated order.

ITU-T Rec. X.692 (03/2002) 131

ISO/IEC 8825-3:2003 (E)

NOTE — The following restrictions arise from normative text and BNF productions: An ordered encoding object list can only be
specified by in-line notation (which is governed by an ordered encoding object list field); encoding objects within that list can be
specified using either a reference name or in-line notation; the governor cannot be #ENCODI NGS.

B.13 Primitive field names

ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.13, is modified as follows:

9.13 The construct "PrimitiveFieldName" is used to identify a field relative to the encoding class containing its
specification:
PrimitiveFieldName ::=
valuefieldreference

| valuesetfieldreference
| orderedvaluelistfieldreference

B.14 Additional reserved words
ITU-T Rec. X.681 | ISO/IEC 8824-2, 10.6 and 10.7, are modified as follows:

10.6 A "word" lexical item used as a "Literal" cannot be one of the following:

BEGIN MINUS-INFINITY PER-CANONICAL-UNALIGNED
BER NON-ECN-BEGIN PLUS-INFINITY

CER NULL TRUE

DER OPTIONS UNION

ENCODE OUTER USE

ENCODE-DECODE PER-BASIC-ALIGNED USE-SET

END PER-BASIC-UNALIGNED

FALSE PER-CANONICAL-UNALIGNED

NOTE — This list comprises only those ASN.1 reserved words which can appear as the first item of a "Value", "EncodingObject",
or "EncodingObjectSet", and also the reserved word END. Use of other ECN reserved words does not cause ambiguity and is
permitted. Where the defined syntax is used in an environment in which a "word" is also an "encodingobjectsetreference", the use
as a "word" takes precedence.

10.7 A "Literal" specifies the actual inclusion of that "Literal", which is required to be a "word", at that position in
the defined syntax.

B.15 Definition of encoding objects
The restriction imposed by ITU-T Rec. X.681 | ISO/IEC 8824-2, 10.12. d), is removed.

NOTE — This affects the defined syntax for defining encoding objects of some classes (see clauses 23 and 24). It means, for
example, that, for a defined syntax such as:

[BOOL- TO- I NT [AS &bool -to-int]]
the user is allowed to write:
BOOL- TO- | NT

when defining an encoding object of this class. In such a case, the DEFAULT value associated with the parameter
"&bool -to-int"(ie., "fal se-zer0") is used in the definition of the transform "BOOL- TO- | NT".

B.16 Additions to "Setting"
ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.7, is modified as follows:

11.7 A "Setting" specifies the setting of some field within an encoding object being defined:

Setting ::=
Value
| ValueSet
| OrderedValueList
| EncodingObject
| EncodingObjectSet
| OrderedEncodingObjectList
| DefinedOrBuiltinEncodingClass
| OUTER
If the field is:
a) a value field, the "Value" alternative;
b) a fixed-type value set field, the "ValueSet" alternative;
c) a fixed-type ordered value list field, the "OrderedValueList" alternative;

132 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

d) an encoding object field, the "EncodingObject" alternative;

e) an encoding object set field, the "EncodingObjectSet" alternative;

f) an ordered encoding object list field, the "OrderedEncodingObjectList" alternative;
g) an encoding class field, the "DefinedOrBuiltinEncodingClass" alternative;

h) a reference field, the "Value" or the OQUTER alternative,

shall be selected. For a reference field specified using the syntax of clauses 20 to 25, the "Value" shall be a dummy
parameter. OUTER can be used whenever a reference is required and identifies a container which is the entire encoding.

NOTE — The setting is further restricted as described in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.5 t0 9.12, and 11.8 to 11.9.
B.17 Encoding class field type

The type that is referenced by this notation depends on the category of the field name. For the different categories of
field names, B.17.2 to B.17.4 below specify the type that is referenced.

B.17.1 The notation for an encoding class field type shall be "EncodingClassFieldType":

EncodingClassFieldType ::=
DefinedOrBuiltinEncodingClass

"nn

FieldName

where the "FieldName" is as specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.14, relative to the encoding class
identified by the "DefinedOrBuiltinEncodingClass".

B.17.2 For a fixed-type value, a fixed-type value set field, or a fixed-type ordered value list field, the notation
denotes the "Type" that appears in the specification of that field in the definition of the encoding object class.

B.17.3 This notation is not permitted if the field is an encoding object, an encoding object set or an ordered
encoding object list field.

B.17.4 The notation for defining a value of this type shall be "FixedTypeFieldVal" as defined in ITU-T Rec.
X.681 | ISO/IEC 8824-2, 14.6.

ITU-T Rec. X.692 (03/2002) 133

ISO/IEC 8825-3:2003 (E)

Annex C

Addendum to ITU-T Rec. X.683 | ISO/IEC 8824-4

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the modifications that need to be applied when productions and/or clauses from ITU-T Rec.
X.683 | ISO/IEC 8824-4 are referenced in this Recommendation | International Standard.

C.1 Parameterized assignments
Clauses 8.1 and 8.3 of ITU-T Rec. X.683 | ISO/IEC 8824-4 are modified as follows:

8.1 There are parameterized assignment statements corresponding to each of the assignment statements specified
in this Recommendation | International Standard. The "ParameterizedAssignment" construct is:

ParameterizedAssignment ::=
ParameterizedEncodingObjectAssignment

| ParameterizedEncodingClassAssignment

| ParameterizedEncodingObjectSetAssignment

8.3 ParameterList ::="{<" Parameter "," + ">}"

Governor ::=
EncodingClassFieldType
| REFERENCE
| DefinedOrBuiltinEncodingClass
| #ENCODINGS

A "DummyReference" in "Parameter" may stand for:
a) an encoding class, in which case there shall be no "ParamGovernor";

b) an ASN.1 value, value set, or fixed-type ordered value list, in which case the "ParamGovernor" shall be
present as a "Governor" that is a type extracted from an encoding class ("EncodingClassFieldType");

¢) an "identifier", in which case the "ParamGovernor" shall be present as a "Governor" that is REFERENCE;

d) an encoding object, or an ordered encoding object list, in which case the "ParamGovernor" shall be
present as a "Governor" that is an encoding class ("DefinedOrBuiltinEncodingClass");

e) an encoding object set, in which case the "ParamGovernor" shall be present as a "Governor" that is
#ENCODI NGS.

NOTE - "DummyGovernor"s are not allowed in ECN.
C.2 Parameterized encoding assignments
The following productions are added to ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2:

ParameterizedEncodingClassAssignment ::=
encodingclassreference
ParameterList

EncodingClass

ParameterizedEncodingObjectAssignment ::=
encodingobjectreference
ParameterList
DefinedOrBuiltinEncodingClass

Moo
EncodingObject
ParameterizedEncodingObjectSetAssignment ::=

encodingobjectsetreference

ParameterList
#ENCODI NGS

EncodingObjectSet
ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.4, is modified as follows:

134 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

8.4 The scope of a "DummyReference" appearing in a "ParameterList" is the "ParameterList" itself, together with
that part of the "ParameterizedAssignment” which follows the "::=". In case of a
"ParameterizedEncodingObjectAssignment", the scope extends to the "DefinedOrBuiltinEncodingClass" which precedes
the ": : =". The "DummyReference" hides any other "Reference" with the same name in that scope.

NOTE — The special case for "ParameterizedEncodingObjectAssignment" is intended to be used in common with renames clauses
(see D.3.3.3). It allows to write an assignment such as the following in which the dummy parameter "#Any- Cl ass" of the
encoding object "new conponent - encodi ng" is used as an actual parameter for the encoding class "#New conponent ":
new-component-encoding {< #Any-class >} #New-component {< #Any-class >} ::=
{ -- encoding object definition -- }

C3 Referencing parameterized definitions

The production "ParameterizedReference" of ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.1, is modified as follows:

ParameterizedReference ::=
Reference
| Reference "{<" ">}"

The following productions are added to ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.2:

ParameterizedEncodingObject ::=
SimpleDefinedEncodingObject
ActualParameterList

SimpleDefinedEncodingObject ::=
ExternalEncodingObjectReference
| encodingobjectreference

ParameterizedEncodingObjectSet ::=
SimpleDefinedEncodingObjectSet
ActualParameterList

SimpleDefinedEncodingObjectSet ::=
ExternalEncodingObjectSetReference
| encodingobjectsetreference

ParameterizedEncodingClass ::=
SimpleDefinedEncodingClass
ActualParameterList

SimpleDefinedEncodingClass ::=
ExternalEncodingClassReference
| encodingclassreference

C4 Actual parameter list
ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.5, is modified as follows:
9.5 The "ActualParameterList" is:

ActualParameterList ::=
"{<" ActualParameter "," + ">}"

ActualParameter ::=
Value

| ValueSet
| OrderedValueList
| DefinedOrBuiltinEncodingClass
| EncodingObject
| EncodingObjectSet
| OrderedEncodingObjectList
| identifier
| STRUCTURE
| OUTER

If the corresponding dummy parameter is:

a) avalue, the "Value" alternative;

b) avalue set, the "ValueSet" alternative;

c) afixed-type ordered value list, the "OrderedValueList" alternative;

d) an encoding class, the "DefinedOrBuiltinEncodingClass" alternative;

ITU-T Rec. X.692 (03/2002) 135

ISO/IEC 8825-3:2003 (E)

e) an encoding object, the "EncodingObject" alternative;

f) an encoding object set, the "EncodingObjectSet" alternative;

g) an ordered encoding object list, the "OrderedEncodingObjectList" alternative;
h) areference, the "identifier", STRUCTURE or OUTER alternative,

shall be selected. STRUCTURE shall only by selected when the actual parameter is used as specified in 17.5.15. OQUTER
can be used whenever a reference is required to identify a container, and identifies the container of the entire encoding.

136 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

Annex D

Examples

(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ECN. The examples are divided into five groups:
— General examples, which show the look-and-feel of ECN definitions (D.1).

— Specialization examples, which show how to modify some parts of a standardized encoding. Each example
has a description of the requirements for the encoding and a description of the selected solution and
possible alternative solutions (D.2).

— Explicitly generated structure examples, which show the use of explicitly generated structures when the
same specialized encoding is used several times (D.2.15).

— A legacy protocol example which shows three ways of handling the problem of a traditional "more-bit"
approach to sequence-of termination (D.3.8).

— A second legacy protocol example, which shows how to construct ECN definitions for a protocol whose
message encodings have been specified using a tabular notation (D.5).

D.1 General examples

The examples described in D.1.1 to D.1.14 are part of a complete ECN specification whose ASN.1, EDM, and ELM
modules are given in outline in D.1.15, D.1.16 and D.1.17, and are given completely in a copy of this annex which is
available from the website cited in Annex F.

D.1.1 An encoding object for a boolean type
D.1.1.1 The ASN.1 assignment is:

Married ::= BOOLEAN
D.1.1.2 The encoding object assignment (see 23.3.1) is:

booleanEncoding #BOOLEAN ::= {
ENCODING-SPACE
SIZE 1
MULTIPLE OF bit
TRUE-PATTERN bits:'1'B
FALSE-PATTERN bits:'0'B}

marriedEncoding-1 #Married ::= booleanEncoding

D.1.1.3 There is no pre-alignment, and the encoding space is one bit, so "Marri ed" is encoded as a bit-field of length 1.
Patterns for TRUE and FALSE values (in this case a single bit) are '1'B and '0'B respectively.

D.1.1.4 The values specified above are the values that would be set by default (see 23.3.1) if the corresponding
encoding properties were omitted, so the same encoding can be achieved with less verbosity by:

marriedEncoding-2 #Married ::= {
ENCODING-SPACE
SIZE 1}

D.1.1.5 This encoding for a boolean is, of course, just what PER provides, and another alternative is to specify the
encoding using the PER encoding object for boolean by way of the syntax provided by 17.3.1.

marriedEncoding-3 #Married ::= {
ENCODE WITH PER-BASIC-UNALIGNED}

D.1.1.6 As these examples show, there are often cases where ECN provides multiple ways to define an encoding. It is
up to the user to decide which alternative to use, balancing verbosity (stating explicitly values that can be defaulted)
against readability and clarity.

ITU-T Rec. X.692 (03/2002) 137

ISO/IEC 8825-3:2003 (E)

D.1.2 An encoding object for an integer type
D.1.2.1 The ASN.1 assignments are:
EvenPositiveInteger ::= INTEGER (1..MAX) (CONSTRAINED BY {-- Must be even --})
EvenNegativelnteger ::= INTEGER (MIN..-1) (CONSTRAINED BY {-- Must be even --})
D.1.2.2 The encoding object assignments are:

evenPositiveIntegerEncoding #EvenPositiveInteger ::= {
USE #NonNegativelnt
MAPPING TRANSFORMS {{INT-TO-INT divide:2}}
WITH PER-BASIC-UNALIGNED}

#NonNegativelnt ::= #INT(0..MAX)

evenNegativelntegerEncoding #EvenNegativelnteger ::= {
USE #NonPositivelnt
MAPPING TRANSFORMS {{INT-TO-INT divide:2
-- Note: -1/2 = 0 - see clause 24.3.6 -- }}
WITH PER-BASIC-UNALIGNED}

#NonPositivelnt ::= #INT(MIN..0)

D.1.2.3 An even value is divided by two, and is then encoded using standardized PER encoding rules for positive and
negative integer types.

D.1.3 Another encoding object for an integer type

D.1.3.1 Here we assume the requirement to define an encoding object which encodes an integer in a two-octet field
starting at an octet boundary.

D.1.3.2 The ASN.1 assignment is:
Altitude ::= INTEGER (0..65535)
D.1.3.3 The Encoding object assignment (see 23.6.1 and 23.7.1) is:

integerRightAlignedEncoding #Altitude ::= {
ENCODING {
ALIGNED TO NEXT octet
ENCODING-SPACE
SIZE 16}}

D.1.4 An encoding object for an integer type with holes
D.1.4.1 The ASN.1 assignment is:

IntegerWithHole ::= INTEGER (-256..-1 | 32..1056)
D.1.4.2 The encoding object assignment (see 19.5.2) is:

integerWithHoleEncoding #Integer WithHole ::= {
USE #IntFrom0To1280
MAPPING ORDERED VALUES
WITH PER-BASIC-UNALIGNED}

#IntFrom0To1280 ::= #INT (0..1280)

D.1.4.3 "I nteger Wt hHol e" is encoded as a positive integer. Values in the range -256..-1 are mapped to values in the
range 0..255 and values in the range 32..1056 are mapped to 256..1280.

D.1.5 A more complex encoding object for an integer type
D.1.5.1 The ASN.1 assignments are:

Positivelnteger ::= INTEGER (1..MAX)

Negativelnteger ::= INTEGER (MIN..-1)
D.1.5.2 The encoding object assignments are:

positivelntegerEncoding #Positivelnteger ::=
integerEncoding

negativelntegerEncoding #Negativelnteger ::=

138 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

integerEncoding

D.1.5.3 Values of "Positivelnteger" and "Negativel nteger" types are encoded by the encoding object
"i nt eger Encodi ng" as a positive integer or as a twos-complement integer respectively. This is defined below, and
provides different encodings depending on the bounds of the type to which it is applied.

D.1.5.4 The "i nt eger Encodi ng" encoding object defined here is very powerful, but quite complex. It contains five
encoding objects of the class #CONDI TI ONAL- | NT; they all define an octet-aligned encoding. When the integer values
being encoded are bounded, the number of bits is fixed; when the values are not bounded, the type is required to be the
last in a PDU, and the value is right justified in the remaining octets of the PDU.

D.1.5.5 The definition of the encoding object (see 23.6.1 and 23.7.1) is:

integerEncoding #INT ::= {ENCODINGS {
{ IF unbounded-or-no-lower-bound
ENCODING-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER
ENCODING twos-complement} ,
{ IF bounded-with-negatives
ENCODING-SPACE
SIZE fixed-to-max
ENCODING twos-complement} ,
{ IF semi-bounded-with-negatives
ENCODING-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER
ENCODING twos-complement} ,
{ IF semi-bounded-without-negatives
ENCODING-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER
ENCODING positive-int} ,
{ IF bounded-without-negatives
ENCODING-SPACE
SIZE fixed-to-max
ENCODING positive-int}}}

D.1.6 Positive integers encoded in BCD

D.1.6.1 This example shows how to encode a positive integer in BCD (Binary Coded Decimal) by successive
transforms: from integer to character string then from character string to bitstring.

D.1.6.2 The ASN.1 assignment is:
PositiveIntegerBCD ::= INTEGER(0..MAX)
D.1.6.3 The encoding object assignment (see 19.4, 24.1 and 23.4.1) is:

positiveIntegerBCDEncoding #PositiveIntegerBCD ::= {
USE #CHARS
MAPPING TRANSFORMS{{
INT-TO-CHARS
-- We convert to characters (e.g., integer 42
-- becomes character string "42") and encode the characters
-- with the encoding object "numeric-chars-to-bcdEncoding"
SIZE variable
PLUS-SIGN FALSE}}
WITH numeric-chars-to-bcdEncoding }

numeric-chars-to-bcdEncoding #CHARS ::= {
ALIGNED TO NEXT nibble
TRANSFORMS {{
CHAR-TO-BITS

-- We convert each character to a bitstring

--(e.g., character "4" becomes '0100'B and "2" becomes '0010'B)
AS mapped
CHAR-LIST { nou,nln’uzn’n:;n’

ITU-T Rec. X.692 (03/2002) 139

ISO/IEC 8825-3:2003 (E)

"4"’H5","6ﬂ’"7"’
"8","9"}
BITS-LIST {'0000'B, '0001'B, '0010'B, '0011'B,
'0100'B, '0101'B, '0110'B, '0111'B,
'1000'B, '1001'B }}}
REPETITION-ENCODING {
REPETITION-SPACE
-- We determine the concatenation of the bitstrings for the
-- characters and add a terminator (e.g.,
--'0100'B + '0010'B becomes '0100 0010 1111'B)
SIZE variable-with-determinant
DETERMINED BY pattern
PATTERN bits:'1111'B}}

D.1.6.4 The positive number is first transformed into a character string by the int-to-chars transform using the options
variable length and no plus sign, and in addition the default option of no padding, giving a string containing characters
"0" to "9". Then the character string is encoded such that each character is transformed into a bit pattern, * 0000' B for
"0", ' 0001' B for "1".., ' 1001' B for "9". The bitstring is aligned on a nibble boundary and terminates with a specific
pattern '1111'B.

D.1.6.5 A more complex alternative, not shown here, but commonly used, would be to embed the BCD encoding in an
octet string, with an external boolean identifying whether there is an unused nibble at the end or not.

D.1.7 An encoding object of class #BI TS

D.1.7.1 This example defines an encoding object of class #BI TS (see 23.2.1) for a bitstring that is octet-aligned, padded
with 0, and terminated by an 8-bit field containing ' 00000000' B (it is assumed that an abstract value never contains
eight successive zeros):

D.1.7.2 The ASN.1 assignment is:
Fax ::= BIT STRING (CONSTRAINED BY {-- must not contain eight successive zero bits --})
D.1.7.3 The encoding object assignment (see 23.2.1, 23.12.1 and 23.13.1) is:

faxEncoding #Fax ::= {
ALIGNED TO NEXT octet
REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY pattern
PATTERN bits:'00000000'B}}

D.1.7.4 This encoding object (of class #BITS) contains an embedded encoding object of class
#CONDI TI ONAL- REPETI TI ON which specifies the mechanism and the termination pattern.

D.1.7.5 As with many of the examples in this annex, there is heavy reliance here on the defaults provided in clause 23,
and advantage is taken of the ability to define encoding objects in-line rather than separately assigning them to reference
names which are then used in other assignments.

D.1.8 An encoding object for an octetstring type
D.1.8.1 The ASN.1 assignment is:

BinaryFile ::= OCTET STRING
D.1.8.2 The encoding object assignment (see 23.9.1) is:

binaryFileEncoding #BinaryFile ::= {
ALIGNED TO NEXT octet
PADDING one
REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER}}

D.1.8.3 The value is octet-aligned using padding with ones and terminates with the end of the PDU.
D.1.9 An encoding object for a character string type
D.1.9.1 The ASN.1 assignment is:

140 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

Password ::= PrintableString

D.1.9.2 The encoding object assignment (see 23.4.1 and 23.13.1) is:

passwordEncoding #Password ::= {
ALIGNED TO NEXT octet
TRANSFORMS {{CHAR-TO-BITS
AS compact
SIZE fixed-to-max
MULTIPLE OF bit }}
REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER}}

D.1.9.3 The string is octet-aligned using padding with "0" and terminates with the end of the PDU; the character-
encoding is specified as "conpact ", so each character is encoded in 7 bits using ' 0000000’ B for the first ASCII
character of type Pri nt abl eStri ng,' 0000001' B for the next, and so on.

D.1.10 Mapping character values to bit values
D.1.10.1 The ASN.1 assignment is:

CharacterStringToBit ::= IASString ("FIRST" | "SECOND" | "THIRD")
D.1.10.2 The encoding object assignment (see 19.2) is:

characterStringToBitEncoding #CharacterStringToBit ::= {
USE #IntFrom0To2
MAPPING VALUES {
"FIRST" TO 0,
"SECOND" TO1,
"THIRD" TO 2}
WITH integerEncoding}

#IntFrom0To2 ::= #INT (0..2)

where "integerEncoding" is defined in D.1.5.5.

D.1.10.3 The three possible abstract values are mapped to three integer numbers and then those numbers are encoded in
a two-bit field.

D.1.11 An encoding object for a sequence type

D.1.11.1Here we encode a sequence type that has a field "a" which carries application semantics (i.e., is visible to the
application), but we also want to use it as a presence determinant for a second (optional) integer field "b". There is then
an octet string that is octet-aligned, and delimited by the end of the PDU. We need to give specialized encodings for the
optionality of "b", and we use the specialized encoding defined in D.1.8 (by reference to the encoding object
"binaryFileEncoding") for the octet string "c". We want to encode everything else with PER basic unaligned.

D.1.11.2The ASN.1 assignment is:

Sequencel ::=SEQUENCE {
a BOOLEAN,
b INTEGER OPTIONAL,
c BinaryFile

-- "BinaryFile" is defined in D.1.8.1 --}
D.1.11.3The ECN assignments (see 17.5 and 23.10.1) are:

sequencel Encoding #Sequencel ::= {
ENCODE STRUCTURE {
b USE-SET OPTIONAL-ENCODING parameterizedPresenceEncoding {< a >},
¢ binaryFileEncoding
-- "binaryFileEncoding" is defined in D.1.8.2 -- }
WITH PER-BASIC-UNALIGNED}

parameterizedPresenceEncoding {< REFERENCE:reference >} #OPTIONAL ::= {
PRESENCE
DETERMINED BY field-to-be-used
USING reference}

ITU-T Rec. X.692 (03/2002) 141

ISO/IEC 8825-3:2003 (E)

D.1.11.4Notice that we did not need to provide the "DECODERS- TRANSFORMS" encoding property in the
"par anet eri zedPr esenceEncodi ng" encoding object, because the component "a" was a boolean, and it is assumed
that TRUE meant that "b" was present. If, however, "a" had been an integer field, or if the application value of TRUE for
"a" actually meant that "b" was absent, then we would have included a "DECODER- TRANSFORMS" encoding property as
in D.2.6.

D.1.12 An encoding object for a choice type

D.1.12.1 A choice type with three alternatives is encoded using the tag number of class context, encoded in a three bit
field, as a selector. The encoding object of class #ALTERNATI VES specify that the identification handle "Tag" is used as
determinant; the encoding object of class #TAG defines the position of the identification handle (three bits). For each
alternative, the value is encoded with PER basic unaligned.

D.1.12.2The ASN.1 assignment is:

Choice ::= CHOICE {
boolean [1] BOOLEAN,
integer [3] INTEGER,
string [5] IASString}

D.1.12.3 The ECN assignments (see 23.1.1 and 23.14.1) are:

choiceEncoding #Choice ::= {
ENCODE STRUCTURE {
boolean [tagEncoding] USE-SET,
integer [tagEncoding] USE-SET,
string [tagEncoding] USE-SET
STRUCTURED WITH {
ALTERNATIVE
DETERMINED BY handle
HANDLE "Tag"}}
WITH PER-BASIC-UNALIGNED}

tagEncoding #TAG ::= {
ENCODING-SPACE
SIZE 3
MULTIPLE OF bit
EXHIBITS HANDLE "Tag" AT {0 |1 |2}}

D.1.12.4Perhaps a neater way of providing the first assignment in D.1.12.3 would be to define a new encoding object
set and apply it as follows:

MyEncodings #ENCODINGS ::= { tagEncoding } COMPLETED BY PER-BASIC-UNALIGNED

choiceEncoding #Choice ::= {
ENCODE STRUCTURE {
STRUCTURED WITH {
ALTERNATIVE
DETERMINED BY handle
HANDLE "Tag"}}
WITH MyEncodings}

D.1.13 Encoding a bitstring containing another encoding

D.1.13.1 A bitstring value encoded with PER basic unaligned, contains the encoding of a sequence as an integral number
of octets (padded with zeros) but not necessarily aligned on an octet boundary.

D.1.13.2The ASN.1 assignment are:

Sequence2 ::= SEQUENCE {
a BOOLEAN,
b BIT STRING (CONTAINING Sequence3) }

Sequence3 ::= SEQUENCE {
a INTEGER(0..10),
b BOOLEAN}

D.1.13.3 The ECN assignments (see 25.1) are:

sequence2Encoding #Sequence? ::= {
ENCODE STRUCTURE {
b { REPETITION-ENCODING

142 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

REPETITION-SPACE
SIZE 8
MULTIPLE OF bit
CONTENTS-ENCODING {containerEncoding}
COMPLETED BY PER-BASIC-UNALIGNED}}
WITH PER-BASIC-UNALIGNED}

containerEncoding #OUTER ::= {
PADDING
MULTIPLE OF octet}

D.1.14 An encoding object set
This encoding object set contains encoding definitions for some types specified in the ASN.1 module of D.1.15.

ExamplelEncodings #ENCODINGS ::= {
marriedEncoding-1
| integerRightAlignedEncoding
| evenPositivelntegerEncoding
| evenNegativelntegerEncoding
| integerRightAlignedEncoding
| integerWithHoleEncoding
| positiveIntegerEncoding
| negativelntegerEncoding
| positiveIntegerBCDEncoding
| faxEncoding
| binaryFileEncoding
| passwordEncoding
| characterStringToBitEncoding
| sequencelEncoding
| choiceEncoding
| sequence2Encoding}

D.1.15 ASN.1 definitions

D.1.15.1This ASN.1 module groups all the ASN.1 definitions from D.1.1 to D.1.12.4 together. They will be encoded
according to the encoding objects defined in the EDM of D.1.16, together with the PER basic unaligned encoding rules.

Examplel-ASN1-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asnl-modulel(2)}
DEFINITIONS AUTOMATIC TAGS : :=

BEGIN

MyPDU ::= CHOICE {
marriedMessage Married,
altitudeMessage Altitude
-- eftc.

Married ::= BOOLEAN
Altitude ::= INTEGER (0..65535)

--elc.

END
D.1.16 EDM definitions
D.1.16.1 This EDM module groups all the ECN definitions from D.1.1 to D.1.12.4 together.

Examplel-EDM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-modulel(3)}
ENCODING-DEFINITIONS ::=
BEGIN

EXPORTS ExamplelEncodings;

IMPORTS #Married, #Altitude, #EvenPositivelnteger, #EvenNegativelnteger, #IntegerRightAligned,
#IntegerWithHole, #Positivelnteger, #Negativelnteger, #PositiveIntegerBCD, #Fax,
#BinaryFile, #Password, #CharacterStringToBit, #Sequencel, #Choice, #Sequence2
FROM Examplel-ASN1-Module { joint-iso-itu-t(2) asn1(1) ecn(4) examples(S) asn1-modulel(2) };

ExamplelEncodings #ENCODINGS ::= {
marriedEncoding-1 |
--elc

ITU-T Rec. X.692 (03/2002) 143

ISO/IEC 8825-3:2003 (E)

sequence2Encoding}
- etc

END
D.1.17 ELM definitions

The following ELM encodes the ASN.1 module defined in D.1.15, using objects specified in the EDM defined in
D.1.16.

Examplel-ELM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) elm-module1(1)}
LINK-DEFINITIONS ::=
BEGIN

IMPORTS
ExamplelEncodings FROM Example-EDM
{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module1(3)}
#MyPDU FROM Examplel-ASN1-Module
{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-modulel(2)};

ENCODE #MyPDU WITH ExamplelEncodings
COMPLETED BY PER-BASIC-UNALIGNED

END
D.2 Specialization examples

The examples in this clause show how to modify selected parts of an encoding for given types in order to minimize the
size of encoded messages. PER basic unaligned encodings normally produce as compact encodings as possible.
However, there are some cases when specialized encodings might be desired:

— There are some special semantics associated with message components that make it possible to
remove some of the PER-generated auxiliary fields.

— The user wants different encodings for PER auxiliary fields that are generated by default, such as
variable-width determinant fields.

D.2.1 Encoding by distributing values to an alternative encoding structure
D.2.1.1 The ASN.1 assignment is:

NormallySmallValues ::= INTEGER (0..1000)
-- Usually values are in the range 0..63, but sometimes the whole value range is used.

D.2.1.2 PER would encode the type using 10 bits. We wish to minimize the size of the encoding such that the normal
case is encoded using as few bits as possible.

NOTE - In this example we take a simple direct approach. A more sophisticated approach using Huffman encodings is given in
E.l.

D.2.1.3 The encoding object assignment (see 19.6) is:

normallySmallValuesEncoding-1 #NormallySmallValues ::= {
USE #NormallySmallValuesStruct
MAPPING DISTRIBUTION {
0..63 TO small,
REMAINDER TO large }
WITH PER-BASIC-UNALIGNED}

D.2.1.4 The encoding structure assignment is:

#NormallySmallValuesStruct ::= #CHOICE {
small #INT (0..63),
large #INT (64..1000)}

D.2.1.5 Values which are normally used are encoded using the "smal | " field and the ones used only occasionally are
encoded using the "l ar ge" field. The selection between the two is done by a one-bit PER-generated selector field. The
length of the "smal | " field is 6 bits and the length of the "l ar ge" field is 10 bits, so the normal case is encoded using 7
bits and the rare case using 11 bits.

D.2.2 Encoding by mapping ordered abstract values to an alternative encoding structure

144 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

D.2.2.1 Example D.2.1 used explicit definition of how value ranges are mapped to fields of the encoding structure. The
same effect can be achieved more simply by using "mapping by ordered abstract values". However, as illustration, we
here also modify the requirement: Arbitrarily large values may occasionally occur, and the ASN.1 assignment is
assumed to have its constraint removed.

D.2.2.2 The encoding object assignments (see 19.5) are:

normallySmallValuesEncoding-2 #NormallySmallValues ::= {
USE #NormallySmallValuesStruct2
MAPPING ORDERED VALUES
WITH NormallySmallValuesTag-encoding-plus-PER}

normallySmallValuesTag-encoding #TAG ::= {
ENCODING-SPACE
SIZE 1}

NormallySmallValuesTag-encoding-plus-PER #ENCODINGS ::= {normallySmallValuesTag-encoding}
COMPLETED BY PER-BASIC-UNALIGNED

D.2.2.3 The encoding structure assignment is:

#NormallySmallValuesStruct2 ::= #CHOICE {
small [#TAG(0)] #INT (0..63),
large [#TAG(1)] #INT (0..MAX) }

D.2.2.4 The result is very similar to D.2.1, but now the values above 64 that are mapped to the field "l ar ge" are
encoded from zero upwards. The two alternatives are distinguished by an index of one bit. Another difference is that the
field "large" is left unbounded, so the encoding object can encode arbitrarily large integers, but with the cost of a length
field in the "l arge" case. This example can also be used if there is no upper-bound on the values that might
occasionally occur ("l ar ge" is not bounded in the replacement structure). This again illustrates the flexibility available
to ECN specifiers to design encodings to suite their particular requirements.

D.2.3 Compression of non-continuous value ranges

D.2.3.1 This example also uses a mapping of ordered abstract values. In this case the mapping is used to compress
sparse values in a base ASN.1 specification. The compression could also have been achieved by defining the ASN.1
abstract value "x" to have the application semantics of "2x", then using a simpler constraint on the ASN.1 integer type.
The assumption in this example, however, is that the ASN.1 designer chose not to do that, and we are required to apply
the compression during the mapping from abstract values to encodings.

D.2.3.2 The ASN.1 assignment is:
SparseEvenlyDistributedValueSet ::= INTEGER (2|46 | 8| 10|12 | 14| 16)

D.2.3.3 PER basic unaligned takes only lower bounds and upper bounds into account when determining the number of
bits needed to encode an integer. This results in unused bit patterns in the encoding. The encoding can be compressed
such that unused bit patterns are omitted, and each value is encoded using the minimum number of bits.

D.2.3.4 The encoding object assignment (see 19.5) is:

sparseEvenlyDistributedValueSetEncoding #SparseEvenlyDistributedValueSet ::= {
USE #IntFrom0To7
MAPPING ORDERED VALUES
WITH PER-BASIC-UNALIGNED}

#IntFrom0To7 ::=#INT (0..7)
D.2.3.5 The eight possible abstract values have been mapped to the range 0..7 and will be encoded in a three-bit field.
D.2.4 Compression of non-continuous value ranges using a transform

D.2.4.1 Example D.2.3 used mapping of ordered abstract values. The same effect can be achieved by using the
#TRANSFORM(class.

D.2.4.2 The encoding object assignment (see 19.4) is:

sparseEvenlyDistributedValueSetEncoding-2 #SparseEvenlyDistributedValueSet ::= {
USE #IntFrom0To7
MAPPING TRANSFORMS {{INT-TO-INT divide: 2}, {INT-TO-INT decrement:1}}
WITH PER-BASIC-UNALIGNED}

D.2.4.3 Again, the eight possible abstract values are mapped to the range 0. . 7 and encoded in a three-bit field.

ITU-T Rec. X.692 (03/2002) 145

ISO/IEC 8825-3:2003 (E)

D.2.5 Compression of an unevenly distributed value set by mapping ordered abstract values
D.2.5.1 The ASN.1 assignment is:

SparseUnevenlyDistributedValueSet ::= INTEGER (0/3|5|6/11|8)
-- Out of order to illustrate that order does not matter in the constraint

D.2.5.2 The encoding should be such that there are no holes in the encoding patterns used.
D.2.5.3 The encoding object assignment is:

sparseUnevenlyDistributedValueSetEncoding #SparseUnevenlyDistributedValueSet ::= {
USE #IntFrom0ToS
MAPPING ORDERED VALUES
WITH PER-BASIC-UNALIGNED}

#IntFrom0To5 ::= #INT (0..5)

D.2.5.4 The six possible abstract values are mapped to the range 0. . 5 and encoded in a three-bit field. The mapping is
as follows: 0-0,3-51,5-2,6-3,8-4,and 11 5.

D.2.6 Presence of an optional component depending on the value of another component
D.2.6.1 The ASN.1 assignment is:

ConditionalPresenceOnValue ::= SEQUENCE {
a INTEGER (0..4),
b INTEGER (1..10),
¢ BOOLEAN OPTIONAL
-- Condition: "c" is present if "a" is 0, otherwise "c" is absent --,
d BOOLEAN OPTIONAL
-- Condition: "d" is absent if "a" is 1, otherwise "d" is present -- }
-- Note the implied presence constraints in comments.
-- Note also that the integer field "a" carries application semantics and has values
-- other than zero and one. If "a" has value 0, both "c" and "d" are present. If "a"
-- has value 1, both "c" and "d" are missing. If "a" has values 3 or 4, "c" is absent
-- and "d" is present These conditions are very hard to express formally using ASN.1 alone.

D.2.6.2 The component "a" acts as the presence determinant for both components "c" and "d", but a PER encoding
would produce two auxiliary bits for the optional components. We require an encoding in which these auxiliary bits are
absent.

D.2.6.3 The encoding object assignment is:

conditionalPresenceOnValueEncoding #ConditionalPresenceOnValue ::= {
ENCODE STRUCTURE {
¢ USE-SET OPTIONAL-ENCODING is-c-present{< a >},
d USE-SET OPTIONAL-ENCODING is-d-present{< a >}}
WITH PER-BASIC-UNALIGNED}

is-c-present {< REFERENCE : a >} #OPTIONAL ::= {
PRESENCE
DETERMINED BY field-to-be-used
USING a
DECODER-TRANSFORMS {{INT-TO-BOOL TRUE-IS {0}}}}

is-d-present {< REFERENCE : a >} #OPTIONAL ::= {
PRESENCE
DETERMINED BY field-to-be-used
USING a
DECODER-TRANSFORMS {{INT-TO-BOOL TRUE-IS {0 |2 | 3 | 4}}}}

D.2.6.4 Here we have a simple, formal, and clear specification of the presence conditions on "c¢" and "d" which can be
understood by encoder-decoder tools. The ASN.1 comments cannot be handled by tools. The provision of optionality
encoding for "c¢" and "d" means that the PER encoding for OPTI ONAL is not used in this case, and there are no auxiliary
bits.

D.2.6.5 The parameterized encoding objects "i s-c-present" and "i s-d-present" specify how presence of the
components is determined during decoding. Note that no transformation is needed (nor permitted) for encoding because
the determinant has application semantics (i.e., it is visible in the ASN.1 type definition). However, a good encoding

146 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

tool will police the setting of "a" by the application, to ensure that its value is consistent with the presence or absence of
"c" and "d" that the application code has determined.

D.2.7 The presence of an optional component depends on some external condition
D.2.7.1 The ASN.1 assignment is:

ConditionalPresenceOnExternalCondition ::= SEQUENCE {
a BOOLEAN OPTIONAL
-- Condition: "a" is present if the external condition "C" holds,
-- otherwise "a'" absent -- }
-- Note that the presence constraint can only be supplied in comment.

D.2.7.2 The application code for both a sender and a receiver can evaluate the condition "C" from some information
outside the message. The ECN specifier wishes tools to invoke such code to determine the presence of "a", rather than
using a bit in the encoding.

D.2.7.3 The encoding object assignment is:

conditionalPresenceOnExternalConditionEncoding #ConditionalPresenceOnExternalCondition ::= {
ENCODE STRUCTURE {
a USE-SET OPTIONAL-ENCODING is-a-present}
WITH PER-BASIC-UNALIGNED}

is-a-present #OPTIONAL ::=
NON-ECN-BEGIN {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) user-notation(7)}
extern C;
extern channel;
/* a is present only if channel is equal to some value “C” */
int is_a_present() {
if(channel == C) return 1;
else return 0; }
NON-ECN-END

D.2.7.4 Because the condition is external to the message, the encoding object for determining presence of the
component "a" can only be specified by a non-ECN definition of an encoding object. However, while this saves bits on
the line, many designers would consider it better to include the bit in the message to reduce the possibility of error, and

to make testing and monitoring easier. Such choices are for the ECN specifier.
D.2.8 A variable length list
D.2.8.1 The ASN.1 assignment is:

EnclosingStructureForList ::= SEQUENCE {
list VariableLengthList}

VariableLengthList ::= SEQUENCE (SIZE (0..1023)) OF INTEGER (1..2)
-- Normally the list contains only a few elements (0..31), but it might contain many.

D.2.8.2 PER basic unaligned encodes the length of the list using 10 bits even if normally the length is in the range
0..31. We wish to minimize the size of the encoding of the length determinant in the normal case while still allowing
values which rarely occur.

D.2.8.3 The encoding object assignment is:

enclosingStructureForListEncoding #EnclosingStructureForList ::= {
USE #EnclosingStructureForListStruct
MAPPING FIELDS
WITH {
ENCODE STRUCTURE {
aux-length list-lengthEncoding,
list {
ENCODE STRUCTURE {
STRUCTURED WITH {
REPETITION-ENCODING {
REPETITION-SPACE
DETERMINED BY field-to-be-set
USING aux-length}}}
WITH PER-BASIC-UNALIGNED }}
WITH PER-BASIC-UNALIGNED}}
-- First mapping: use of an encoding structure with an explicit length determinant.

ITU-T Rec. X.692 (03/2002) 147

ISO/IEC 8825-3:2003 (E)

list-lengthEncoding #AuxVariableListLength ::= {
USE #AuxVariableListLengthStruct --See D.2.8.4.
MAPPING ORDERED VALUES
WITH PER-BASIC-UNALIGNED}
-- Second mapping: list length is encoded as a choice between a short form "normally"” and
-- a long form "sometimes".

D.2.8.4 The encoding structure assignments are:

#EnclosingStructureForListStruct ::= #CONCATENATION {
aux-length#AuxVariableListLength,
list #VariableLengthList}

#AuxVariableListLength ::= #INT (0..1023)

#AuxVariableListLengthStruct ::= #ALTERNATIVES {
normally #INT (0..31),
sometimes #INT (32..1023)}

D.2.8.5 The length determinant for the component "l i st " is variable. The length determinant for short list values is
encoded using 1 bit for the selection determinant and 5 bits for the length determinant. The length determinant for long
list values is encoded using 1 bit for the selection determinant and 10 bits for the length determinant.

D.2.9 Equal length lists
D.2.9.1 The ASN.1 assignment is:

EqualLengthLists ::= SEQUENCE {
listl Listl,
list2 List2}
(CONSTRAINED BY {
-- "list]" and "list2" always have the same number of elements. --

b
List1 ::= SEQUENCE (SIZE (0..1023)) OF BOOLEAN

List2 ::= SEQUENCE (SIZE (0..1023)) OF INTEGER (1..2)

D.2.9.2 Both "l'i st1" and "l i st 2" have the same number of elements, and the ECN specifier wishes to use a single
length determinant for both lists. (PER would encode length fields for both components.)

D.2.9.3 The encoding object assignments are:

equalLengthListsEncoding #EqualLengthLists ::= {

USE #EqualLengthListsStruct

MAPPING FIELDS

WITH {

ENCODE STRUCTURE {
listl1 list1Encoding{< aux-length >},
list2 list2Encoding{< aux-length >}}
WITH PER-BASIC-UNALIGNED}}

The first encoding object is defined with two parameterized encoding objects of classes #List1 and #List2
respectively using the length field as an actual parameter. Those two encoding objects use a common parameterized
encoding object of class #REPETI Tl ON.

listlEncoding {< REFERENCE : length >} #Listl ::= {
ENCODE STRUCTURE { USE-SET
STRUCTURED WITH list-with-determinantEncoding {< length >}}
WITH PER-BASIC-UNALIGNED}

list2Encoding {< REFERENCE : length >} #List2 ::= {
ENCODE STRUCTURE { USE-SET
STRUCTURED WITH list-with-determinantEncoding {< length >}}
WITH PER-BASIC-UNALIGNED}

list-with-determinantEncoding {< REFERENCE : length-determinant >} #REPETITION ::= {
REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
MULTIPLE OF repetitions
DETERMINED BY field-to-be-set
USING length-determinant}}

148 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

D.2.9.4 The encoding structure assignments are:

#EqualLengthListsStruct ::= #CONCATENATION {
aux-length#AuxListLength,
list1 #List1,
list2 #List2}

#AuxListLength ::= #INT (0..1023)
D.2.10 Uneven choice alternative probabilities
D.2.10.1 The ASN.1 assignment is:

EnclosingStructureForChoice ::= SEQUENCE {
choice UnevenChoiceProbability }

UnevenChoiceProbability ::= CHOICE {
frequentl INTEGER (1..2),
frequent2 BOOLEAN,
commonl INTEGER (1..2),
common2 BOOLEAN,
common3 BOOLEAN,
rarel BOOLEAN,
rare2 INTEGER (1..2),
rare3 INTEGER (1..2)}

D.2.10.2 The alternatives of the choice type have different selection probabilities. There are alternatives which appear
very frequently ("f requent 1" and "f r equent 2"), or are fairly common ("comonl", "conmon2" and "common3"), or
appear only rarely ("rarel", "rare2" and "rar e3"). The encoding for the alternative determinant should be such that
those alternatives that appear frequently have shorter determinant fields than those appearing rarely.

D.2.10.3 The encoding structure assignments are:

#EnclosingStructureForChoiceStruct ::= #CONCATENATION {
aux-selector #AuxSelector,
choice #UnevenChoiceProbability }
-- Explicit auxiliary alternative determinant for "choice".

#AuxSelector ::= #INT (0..7)
D.2.10.4 The encoding object assignments are:

enclosingStructureForChoiceEncoding #EnclosingStructureForChoice ::= {
USE #EnclosingStructureForChoiceStruct
MAPPING FIELDS
WITH {
ENCODE STRUCTURE {
aux-selector auxSelectorEncoding,
choice {
ENCODE STRUCTURE {
STRUCTURED WITH {
ALTERNATIVE
DETERMINED BY field-to-be-set
USING aux-selector}}
WITH PER-BASIC-UNALIGNED }}
WITH PER-BASIC-UNALIGNED} }
-- First mapping: inserts an explicit auxiliary alternative determinant.
-- This encoding object specifies that an auxiliary determinant is used
-- as an alternative determinant.

auxSelectorEncoding #AuxSelector ::= {
USE #BITS
-- ECN Huffman
-- RANGE (0..7)
--(0..1) 1S 60%
- (2..4) 1S 30%
-~ (5..7) 1S 10%
-- End Definition
-- Mappings produced by "ECN Public Domain Software for Huffman encodings, version 1"
-- (see E.8)
MAPPING TO BITS {

ITU-T Rec. X.692 (03/2002) 149

ISO/IEC 8825-3:2003 (E)

0. 1TO'10'B ..'11'B,
2..4TO'001'B..'011'B,
5 TO '0001'B,
6.. 7TO'00000'B .. '00001'B}
WITH PER-BASIC-UNALIGNED }
-- Second mapping: Map determinant indexes to bitstrings

nn

D.2.10.5In the above, we quantified "frequent", "common", and "rare" as 60%, 30%, and 10%, respectively, and used
the public domain ECN Huffman generator (see E.8) to determine the optimal bit-patterns to be used for each range of
integer.

D.2.10.6 The above is in a mathematical sense optimal, but how much difference it makes as a percentage of total traffic
depends on what the other parts of the protocol consist of. Whilst it costs nothing in implementation effort to produce
and use optimal encodings (because tools can be used), the ultimate gains may not be significant.

D.2.11 A version 1 message
D.2.11.1 ASN.1 assignment:

VersionlMessage ::= SEQUENCE {
ie-1 BOOLEAN,
ie-2 INTEGER (0..20)}

We want to use PER basic unaligned, but intend to add further fields in version 2, and wish to specify that version 1
systems should accept and ignore any additional material in the PDU.

D.2.11.2We use two encoding structures to encode the message: one is the implicitly generated encoding structure
containing only the version 1 fields, and the second is a structure that we define containing the version 1 fields plus a
variable-length padding field that extends to the end of the PDU. The version 1 system uses the first structure for
encoding, and the second for decoding. Apart from this approach to extensibility, all encodings are PER basic
unaligned. The version 1 decoding structure is:

#Version1DecodingStructure ::= #CONCATENATION {
ie-1 #BOOL,
ie-2 #INT (0..20),
future-additions #PAD}

D.2.11.3 The encoding object assignments are:

versionlMessageEncoding #VersionlMessage ::= {
ENCODE-DECODE
{ENCODE WITH PER-BASIC-UNALIGNED }
DECODE AS IF decodingSpecification}
decodingSpecification #Version1Message ::= {
USE #Version1DecodingStructure
MAPPING FIELDS
WITH {
ENCODE STRUCTURE {
future-additions additionsEncoding{< OUTER >} }
WITH PER-BASIC-UNALIGNED}}

additionsEncoding {< REFERENCE:determinant >} #PAD ::= {
ENCODING-SPACE
SIZE encoder-option-with-determinant
DETERMINED BY container
USING determinant}

D.2.12 The encoding object set

This encoding object set contains encoding definitions for some of the types specified in the ASN.1 module named
"Exanpl e2- ASN1- Modul e" (the rest is encoded using PER basic unaligned).

Example2Encodings #ENCODINGS ::= {
normallySmallValuesEncoding-1 |
sparseEvenlyDistributedValueSetEncoding |
sparseUnevenlyDistributedValueSetEncoding |
conditionalPresenceOnValueEncoding |
conditionalPresenceOnExternalConditionEncoding |
enclosingStructureForListEncoding |
equalLenghListsEncoding |
enclosingStructureForChoiceEncoding |
version1MessageEncoding }

150 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

D.2.13 ASN.1 definitions

This module groups together all the ASN.1 definitions from D.2.1 to D.2.11 that will be encoded according to the
encoding objects defined in the EDM, and also lists the other ASN.1 definitions that will be encoded with the PER basic

unaligned encoding rules.

Example2-ASN1-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asnl-module2(5)}
DEFINITIONS AUTOMATIC TAGS : :=
BEGIN

ExampleMessages ::= CHOICE {
firstExample NormallySmallValues,
secondExample SparseEvenlyDistributedValueSet
-- etc.

NormallySmallValues ::= INTEGER (0..1024)
SparseEvenlyDistributedValueSet ::= INTEGER (2|46 |8|10| 12|14 | 16)

-- elc.

END

D.2.14 EDM definitions

Example2-EDM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module2(6)}
ENCODING-DEFINITIONS ::=
BEGIN

EXPORTS Example2Encodings;

IMPORTS #NormallySmallValues, #SparseEvenlyDistributedValue,
#SparseUnevenlyDistributedValueSet, #ConditionalPresenceOnValueSet,
#ConditionalPresenceOnExternalCondition,

#EnclosingStructureForList, #EqualLengthLists, #EnclosingStructureForChoice,
#VersionlMessage

FROM Example2-ASN1-Module

{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module2(5)};

Example2Encodings #ENCODINGS ::= {
normallySmallValuesEncoding |
--elc.
extensibleMessageEncoding}
-- elc.

END
D.2.15 ELM definitions

The following ELM is associated with the ASN.1 module defined in D.2.13, and the EDM defined in D.2.14.

Example2-ELM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(S) elm-module2(4)}
LINK-DEFINITIONS ::=
BEGIN

IMPORTS
Example2Encodings FROM Example2-EDM
{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module2(6)}
#ExampleMessages FROM Example2-ASN1-Module
{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asnl-module2(5)};

ENCODE #ExampleMessages WITH Example2Encodings
COMPLETED BY PER-BASIC-UNALIGNED

END

D.3 Explicitly generated structure examples

The examples described in D.3.1 to D.3.4 show the use of explicitly generated structures to replace an encoding class in
an implicitly generated encoding structure with a synonymous class. We then produce specialized encodings by

including in the encoding object set an object of the synonymous class.

ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

The examples are presented using the following format:
— The "ASN.1 type assignment". This gives the original ASN.1 type definition.

— The requirement. This lists the required changes from the encodings provided by PER basic
unaligned.

— Modification of the implicitly generated encoding structure to produce a new encoding structure.

— The encoding class and encoding object assignments.
D.3.1 Sequence with optional components defined by a pointer
D.3.1.1 The ASN.1 assignment is:

Sequencel ::= SEQUENCE{
componentl INTEGER OPTIONAL,
component2 INTEGER OPTIONAL,
component3 VisibleString }

D.3.1.2 Instead of using the PER bit-map for the two components of type integer marked OPTI ONAL, the presence and
the position of those components are determined by pointers at the beginning of the encoding of the sequence. Each
pointer contains 0 (component absent) or a relative offset to the encoding of the component which begins on an octet
boundary.

D.3.1.3 The encoding class #| NTEGER is replaced with "#I nt eger - wi t h- poi nt er - concat " in the encoding object of
"sequencel-encodi ng". The class "#l nteger-wi t h-poi nter-concat" is defined as a concatenation structure
containing one element which is the replaced element combined with a class in the optionality category
"#| nt eger-optionality".

D.3.1.4 Then two encoding objects are defined. The first, "i nt eger-wi t h- poi nt er - concat - encodi ng" of class
#l nt eger - wi t h- poi nt er-concat receives three parameters: the replaced element, the pointer and the current
combined encoding object set (see 22.1.3.7). The second, "i nt eger - opti onal i t y- encodi ng" of class "#I nt eger -
optionality" receives one parameter, the pointer, which is used to determine the presence of the component. Since
PER- BASI C- UNALI GNED does not contain an encoding object of class #CONCATENATI ON with optional components, a
third encoding object of class #CONCATENATI ON needs to be defined. This object "concat" uses default settings.

D.3.1.5 The encoding class and encoding object assignments are:

sequencel-encoding #SEQUENCE ::= {
REPLACE OPTIONALS
WITH #Integer-with-pointer-concat
ENCODED BY integer-with-pointer-concat-encoding
INSERT AT HEAD #Pointer
ENCODING-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER }

#Pointer ::= #INTEGER

#Integer-with-pointer-concat {< #Element >} ::= #CONCATENATION {
element #Element OPTIONAL-ENCODING #Integer-optionality }

#Integer-optionality ::= #OPTIONAL

integer-optionality-encoding{< REFERENCE: start-pointer>} #Integer-optionality ::= {
ALIGNED TO ANY octet
START-POINTER start-pointer
PRESENCE DETERMINED BY pointer}

integer-with-pointer-concat-encoding {< #Element, REFERENCE:pointer, #fENCODINGS:EncodingObjectSet >}
#Integer-with-pointer-concat{< #Element >} ::= {
ENCODE STRUCTURE {
element USE-SET OPTIONAL-ENCODING integer-optionality-encoding{< pointer >}}
WITH EncodingObjectSet}

concat #CONCATENATION ::= {
ENCODING-SPACE }

152 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

D.3.2 Addition of a boolean type as a presence determinant
D.3.2.1 The ASN.1 assignment is:

Sequence2 ::= SEQUENCE {
componentl BOOLEAN OPTIONAL,
component2 INTEGER,
component3 VisibleString OPTIONAL }

D.3.2.2 Instead of using the PER bit-map for components marked "OPTI ONAL", the presence of an optional component
is related to the value of a unique presence bit which is equal to 1 (component absent), or 0 (component present). In that
case, the presence bit is inverted.

D.3.2.3 The encoding structures and encoding objects are defined as follows:

The encoding class #OPTI ONAL is renamed as #Sequence2- opt i onal in the "RENAMVES" clause (see D.3.7). Therefore
the "#Sequence?2" class is implicitly replaced with:

#Sequence2 ::= #SEQUENCE {
componentl #BOOL OPTIONAL-ENCODING #Sequence2-optional,
component2 #INTEGER,
component3 #VisibleString OPTIONAL-ENCODING #Sequence2-optional}

where:
#Sequence2-optional ::= #OPTIONAL

Then an encoding object of class "#Sequence2-optional " is defined; that object, using the replacement group,
replaces the component encoding definition (see 23.10.3.2) with the class "Opt i onal - wi t h- det er ni nant ".

sequence2-optional-encoding #Sequence2-optional ::= {
REPLACE STRUCTURE
WITH #Optional-with-determinant
ENCODED BY optional-with-determinant-encoding}

That class, which is parameterized by the original component, belongs to the concatenation category and has two
components: the determinant (boolean) and the original component.

#Optional-with-determinant{< #Element >} ::= #CONCATENATION {
determinant #BOOLEAN,
component #Element OPTIONAL-ENCODING #Presence-determinant}

where:
#Presence-determinant ::= #OPTIONAL

Then an encoding object of class "#Optional -with-determ nant" is defined; that object has two dummy
parameters: the class of the component and an encoding object set used to encode everything except determinant and
component optionality:

optional-with-determinant-encoding {< #Element, #ENCODINGS: Sequence2-combined-encoding-object-set >}
#Optional-with-determinant {< #Element >} ::={
ENCODE STRUCTURE {
determinant determinant-encoding,
component USE-SET
OPTIONAL-ENCODING if-component-present-encoding{< determinant >} }
WITH Sequence2-combined-encoding-object-set }

The encoding is completely specified by the definition of encoding objects "i f - conponent - pr esent - encodi ng" and
"det er mi nant - encodi ng":

if-component-present-encoding {<REFERENCE:presence-bit>} #Presence-determinant ::= {
PRESENCE
DETERMINED BY field-to-be-set
USING presence-bit}

determinant-encoding #BOOLEAN ::= {
ENCODING-SPACE
SIZE 1
MULTIPLE OF bit
TRUE-PATTERN bits:'0'B
FALSE-PATTERN bits:'1'B}

ITU-T Rec. X.692 (03/2002) 153

ISO/IEC 8825-3:2003 (E)

D.3.3 Sequence with optional components identified by a unique tag and delimited by a length field
D.3.3.1 The ASN.1 assignments are:
Octet3 ::= OCTET STRING (CONTAINING Sequence3)

Sequence3 ::=SEQUENCE {
componentl [0] BIT STRING (SIZE(0..2047)) OPTIONAL,
component2 [1] OCTET STRING (SIZE(0..2047)) OPTIONAL,
component3 [2] VisibleString (SIZE(0..2047)) OPTIONAL }

D.3.3.2 Each component is identified by a tag on four bits and the total length of the sequence is specified with a field
of eleven bits which precedes the encoding of the first component.

D.3.3.3 The encoding classes #OCTETS, #OPTIONAL and #TAG are renamed respectively as #Cctets3,
#Sequence3- opti onal and #TAG 4-bi ts in the "RENAMES" clause (see D.3.7). Then encoding objects of the new
encoding classes are defined.

D.3.3.4 The encoding class and encoding object assignments for the octet string are:
#Octets3 ::= #OCTET-STRING

octets3-encoding #Octets3 ::= {
REPETITION-ENCODING {
REPLACE STRUCTURE
WITH #Octets-with-length
ENCODED BY octets-with-length-encoding}}

#Octets-with-length{< #Element >} ::= #CONCATENATION {
length #INT(0..2047),
octets #Element}

octets-with-length-encoding{< #Element >} #Octets-with-length{< #Element >} ::= {
ENCODE STRUCTURE {
octets octets-encoding{< length >}}
WITH PER-BASIC-UNALIGNED}

octets-encoding{< REFERENCE:length >} #OCTETS ::= {
REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY field-to-be-set
USING length} }

D.3.3.5 The encoding class and encoding object assignments for the sequence are:

#Sequence3-optional ::= #OPTIONAL

sequence3-optional-encoding #Sequence3-optional ::= {
PRESENCE
DETERMINED BY container
USING OUTER}

#TAG-4-bits ::= #TAG

tag-4-bits-encoding #TAG-4-bits ::= {
ENCODING-SPACE
SIZE 4}

D.3.4 Sequence-of type with a count
D.3.4.1 The ASN.1 assignment is:
SequenceOfIntegers ::= SEQUENCE(SIZE(0..63)) OF INTEGER(0..1023)
D.3.4.2 The number of elements is encoded in a six-bit field preceding the encoding of the first element.

D.3.4.3 The encoding class #SEQUENCE- OF is renamed as #Sequence™ in the "RENAVES" clause (see D.3.7). An
encoding object of the new encoding class is defined. The encoding class and encoding object assignments are:

#SequenceOf ::= #REPETITION

sequenceOf-encoding #SequenceOf ::= {
REPETITION-ENCODING {

154 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

REPLACE STRUCTURE
WITH #SequenceOf-with-count
ENCODED BY sequenceOf-with-count-encoding}}

#SequenceOf-with-count{< #Element >} ::= #CONCATENATION {
count #INT(0..63),
elements #Element }

sequenceOf-with-count-encoding{< #Element >} #SequenceOf-with-count{< #Element >} ::= {
ENCODE STRUCTURE {
elements {
ENCODE STRUCTURE {
STRUCTURED WITH elements-encoding{< count >}}
WITH PER-BASIC-UNALIGNED}}
WITH PER-BASIC-UNALIGNED}

elements-encoding{< REFERENCE:count >} #REPETITION ::= {
REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
MULTIPLE OF repetitions
DETERMINED BY field-to-be-set
USING count}}

D.3.4.4 The count field is encoded using the PER encoding rules for an integer type with the value range constraint
(0..63), which gives a six-bit field.

D.3.5 Encoding object set
The encoding object set contains encoding objects of classes defined in the EDM module.

Example3Encodings #ENCODINGS ::= {
sequencel-encoding |
concat |
sequence2-optional-encoding |
octets3-encoding |
sequence3-optional-encoding |
tag-4-bits-encoding |
sequenceOf-encoding }

D.3.6 ASN.1 definitions

This module groups together the ASN.1 definitions from D.3.1 to D.3.4 that will be encoded according to the encoding
objects defined in the EDM of D.3.7.

Example3-ASN1-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asnl-module3(9)}

DEFINITIONS

AUTOMATIC TAGS ::=

BEGIN

Sequencel ::= SEQUENCE {
componentl BOOLEAN OPTIONAL,
component2 INTEGER OPTIONAL,
component3 VisibleString OPTIONAL }

--eflc.
END

D.3.7 EDM definitions

Example3-EDM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module3(10)}
ENCODING-DEFINITIONS ::=
BEGIN

EXPORTS Example3Encodings;
RENAMES
#OPTIONAL AS #Sequence2-optional
IN #Sequence2

ITU-T Rec. X.692 (03/2002) 155

ISO/IEC 8825-3:2003 (E)

#OCTET-STRING AS #Octets3
IN ALL
#OPTIONAL AS #Sequence3-optional
IN #Sequence3
#TAG AS #TAG-4-bits
IN #Sequence3
FROM Example3-ASN1-Module { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module3(9)};

Example3Encodings #ENCODINGS ::={
sequencel-optional-encoding |

--elc.
sequenceOf-encoding }
--eflc.
END

D.3.8 ELM definitions
The following ELM is associated with the ASN.1 module defined in D.3.6 and the EDM defined in D.3.7.
Example3-ELM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) elm-module3(8)}

LINK-DEFINITIONS ::=
BEGIN

IMPORTS Example3Encodings, #Sequencel, #Sequence2, #Octet3, #Sequence3, #SequenceOflntegers
FROM Example3-EDM { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module3(10) };

ENCODE #Sequencel, #Sequence2, #Octet3, #Sequence3, #SequenceOflntegers

WITH Example3Encodings
COMPLETED BY PER-BASIC-UNALIGNED

END
D.4 A more-bit encoding example
D.4.1 Description of the problem
D.4.1.1 This example is taken from ITU-T Rec. Q.763 (Signalling System No. 7 — ISDN User Part formats and codes).

D.4.1.2 There is a requirement to produce the following encoding as a series of octets:

8 7 6 5 4 3 2 1
extension spare protocol profile
indicator

D.4.1.3 Bit 8 is an "extension indicator". If it is 0, there is a following octet in the same format. If it is 1, this is the last
octet of the series.

NOTE — The PER encoding of boolean is 1 for TRUE and 0 for FALSE, and ECN requires that the last element returns FALSE,
carlier elements TRUE. Thus if we use a PER-encoded boolean for the more-bit, we need to apply the "not " transform.

D.4.1.4 This is the traditional use of a "more bit", although with the perhaps unusual zero for "more" and one for "last".

D.4.1.5 The example would be simplified if the use of the "extension indicator" had zero and one interchanged, and if
there were no "spare" bits, but use of the real example was preferred here.

D.4.1.6 There are four approaches to solving this problem.

D.4.1.7 The first approach is to include a component in the ASN.1 specification to provide the more-bit determinant
(see D.4.2). This approach is deprecated for two reasons. The first is that the ASN.1 type definition contains a
component which does not carry application semantics. The second is that it requires the application to (redundantly)
set this field correctly in each element of the more-bit repetition.

D.4.1.8 The second approach is to use value mappings from an implicitly generated structure to a user-defined
encoding structure which includes the more-bit determinant (see D.4.3).

D.4.1.9 The third approach is to use the replacement mechanism to include the more-bit determinant (see D.4.4).
D.4.1.10 The fourth approach is to use head-end insertion of the more-bit determinant. (This is not illustrated here.)

D.4.1.11 All of the last three approaches have their own advantages, and choosing between them is largely a matter of
style.

156 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

D.4.2 Use of ASN.1 to provide the more-bit determinant

D.4.2.1 In this approach, the ASN.1 reflects all fields in the encoding. This is generally considered "dirty", as fields
which should be visible only in the encoding are visible to the application, reducing the "information hiding" that is the
strength of ASN.1. In this case the ASN.1 is:

ProfileIndication ::= SEQUENCE OF

SEQUENCE {
more-bit BOOLEAN,
reserved BIT STRING (SIZE (2)),

protocol-Profile-ID INTEGER (0..32) }
D.4.2.2 The implicitly generated encoding structure is:

#ProfileIndication ::= #SEQUENCE-OF {
#SEQUENCE {
more-bit #BOOLEAN,
reserved #BIT-STRING (SIZE (2)),
protocol-Profile-ID #INTEGER (0..32) } }

D.4.2.3 First, we produce a generic encoding object for #SEQUENCE- OF that uses a more-bit in a field identified as a
parameter of the encoding object, and with BOOLEAN TRUE (encoded as a single "1" bit by PER) for the last element:

more-bit-encoding {< REFERENCE:more-bit >} #SEQUENCE-OF ::= {
REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY flag-to-be-set
USING more-bit
ENCODER-TRANSFORMS
{ { BOOL-TO-BOOL AS logical:not } } } }

D.4.2.4 This encoding object is also used in D.4.3 and D.4.4, as it provides the fundamental description of the encoding
needed for the repetition.

D.4.2.5 With the first (simple but dirty!) approach, we can now define our encoding object for #Pr of i | el ndi cati on
by using ENCODE STRUCTURE, and apply that encoding object in the ELM, completing the example. The encoding
object is defined as:

profileIndicationEncoding #ProfileIndication ::= {
ENCODE STRUCTURE {
STRUCTURED WITH
more-bit-encoding {< more-bit >} }
WITH PER-BASIC-UNALIGNED }

D.4.3 Use of value mappings to provide the more-bit determinant

D.4.3.1 In this approach, we hide the encoding structure in an ECN definition of a user-defined encoding structure, and
use value mapping by matching fields to enable an encoding of the user-defined encoding structure to encode a
simplified ASN.1 type definition.

D.4.3.2 The ASN.1 type definition is now:

ProfileIndication2 ::= SEQUENCE OF
protocol-Profile-ID INTEGER (0..32)

D.4.3.3 This has an implicitly-generated encoding structure (to which we apply our encodings in the ELM) of:

#ProfileIndication2 ::= #SEQUENCE-OF {
protocol-Profile-ID #INTEGER (0..32) }

D.4.3.4 We define an encoding structure for the encoding we require, similar to the ASN.1 we wrote in the first
approach (see D.4.2.1), except that we use #PAD for the reserved bits:

#ProfileIndicationStruct ::= #SEQUENCE-OF {
#SEQUENCE {
more-bit-field #BOOLEAN,
reserved #PAD,
protocol-Profile-ID #INTEGER (0..32) } }

D.4.3.5 We now need an encoding object for the two-bit #PAD, before we can complete the encoding:

pad-encoding #PAD ::= {

ITU-T Rec. X.692 (03/2002) 157

ISO/IEC 8825-3:2003 (E)

ENCODING-SPACE SIZE 2
PATTERN bits:'00'B }

NOTE — Subclause 23.11.4.2 specifies that decoders should accept any value for #PAD bits, which is what we require here, so we
do not need a differential encode/decode.

D.4.3.6 We define an encoding object for our structure, much as in the first approach (see D.4.2.5):

profileIndicationStructEncoding #ProfileIndicationStruct ::= {
ENCODE STRUCTURE {
STRUCTURED WITH
more-bit-encoding {< more-bit-field >} }
WITH {pad-encoding} COMPLETED BY PER-BASIC-UNALIGNED }

D.4.3.7 Finally, we use value mapping from the implicitly generated structure to our explicitly generated structure to
define our final encoding:

profileIndication2Encoding #ProfileIndication2 ::= {
USE #ProfileIndicationStruct
MAPPING FIELDS
WITH profileIndicationStructEncoding }

D.4.4 Use of the replacement mechanism to provide the more-bit determinant

D.4.4.1 In our final approach, we define a generic sequence-of encoding that can apply to any sequence of. For this we
need a parameterised encoding structure:

#SequenceOfStruct {<#Component >} ::=
#SEQUENCE {
more-bit-field #BOOLEAN,
reserved #PAD,
sequence-of-component#Component }

D.4.4.2 We define our sequence-of encoding to perform a replacement of the component with this structure, specifying
more-bit-encoding and using the defined pad-encoding:

sequence-of-encoding #SEQUENCE-OF ::= {
REPETITION-ENCODING {
REPLACE COMPONENT WITH #SequenceOfStruct
REPETITION-SPACE

SIZE variable-with-determinant

DETERMINED BY flag-to-be-set
USING more-bit-field

ENCODER-TRANSFORMS
{ { BOOL-TO-BOOL AS logical:not } } } }

D.4.4.3 When this is applied in the ELM, "COVPLETED BY PER-BASI C- UNALI GNED" is used as the combined
encoding object set to complete the encoding, giving the desired effect.

D.5 Legacy protocol specified with tabular notation

D.5.1 Introduction

D.5.1.1 The purpose of the example in this clause is to show how to construct ECN definitions for a protocol whose
message encodings have been specified using "bits and bytes" pictures and tabular notation. The following tables
contain the contents of the messages (only "Messagel" has been shown completely):

Message 1:
8 [7 [6 [5 | 4 | 3 [2 [1
Octet 1 Message id
Octet 2 A b-flag c-len | reserved
Octet 3 bl b2 reserved b3 reserved
Octet Y cl
Octet Y+1 c3 reserved
Octet Z dl | d2 | d3 | reserved
Message 2:
8 | 7 [6 | 5 [4 | 3 [1
Octet 1 Message id
158 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

| Octet 2... | Something — 1 |
Message 3:
8 | 7 | 6 | s [4 [3 [2 | 1
Octet 1 Message id
Octet 2... Something — 2

D.5.1.2 All the messages have a common heading part (shown in m in the tables). In this example it is used only for
message identification.

D.5.1.3 Message 1 has three kinds of fields:
— mandatory fields ("a");
— mandatory fields that are determinants for other fields ("b-flag", "c-len");
— optional fields ("b", "¢", and "d").

D.5.1.4 The fields "b", "c" and "d" are all required to start on an octet boundary.

D.5.1.5 The fields "b", "c¢" and "d" are composed of sub-fields ("b1", "b2", "b3", "c1", etc.) of fixed length. In addition
fields "c" and "d" may appear multiple times (but only one occurrence is shown above). The field "b2" is required to
start on a nibble boundary.

D.5.1.6 Presence of an optional component is indicated using different methods:
— The field "b" is present if the value of the "b-flag" field is 1.

— The field "d" is present if there are octets left in the message.

D.5.1.7 The length of a field that can appear multiple times is determined using different methods:
— The number of repetitions of the field "c" is governed by the determinant field "c-len".

— The number of repetitions of the field "d" is determined by the end of message.

D.5.1.8 The following ASN.1 module contains definitions for the message structures presented above. The following
design decisions have been made:

— There is one encapsulating type which contains the common definitions for all the messages.

— Auxiliary determinant fields in messages are visible at the ASN.1 level. Note, this is done for simplicity
of exposition in this example, but it should be normal practice to keep such fields out of the ASN.1
definition unless they carry real application semantics.

— Extensibility is expressed in the form of comments.

— Padding is not visible.
D.5.1.9 The ASN.1 module is:
LegacyProtocol-ASN1-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module4(11)}

DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

LegacyProtocolMessages ::= SEQUENCE {
message-id ENUMERATED {messagel, message2, message3},
messages CHOICE {
messagel Messagel,
message2 Message2,
message3 Message3}}
-- The CHOICE is constrained by the value of message-id.

Messagel ::= SEQUENCE {
a A,
b-flag BOOLEAN,
c-len INTEGER (0..max-c-len),
b B OPTIONAL, -- determined by "b-flag"
¢ C, -- determined by "c-len"
d D OPTIONAL} -- determined by end of PDU

A ::= INTEGER (0..7) -- Values 5..7 are reserved for future use. Version I systems should treat 5 to 7 as 4.

B ::= SEQUENCE {
bl ENUMERATED { €0, el, €2, €3 },
b2 BOOLEAN,

ITU-T Rec. X.692 (03/2002) 159

ISO/IEC 8825-3:2003 (E)

b3 INTEGER (0..3) }
C ::= SEQUENCE (SIZE (0..max-c-len)) OF C-elem

C-elem ::= SEQUENCE {
¢l BIT STRING (SIZE (4)),
c2 INTEGER (0..1024) }

D ::= SEQUENCE (SIZE (0..max-d-len)) OF D-elem

D-elem ::= SEQUENCE {
dl BOOLEAN,
d2 ENUMERATED { 0, f1, {2, {3, 4, {5, f6, {7 },
d3 INTEGER (0..7) }

max-c-len INTEGER ::=7
max-d-len INTEGER ::= 20

Message2 ::= SEQUENCE {
-- something 1 -- }

Message3 ::= SEQUENCE {
-- something 2 -- }

END

D.5.1.10The EDM module in D.5.7 contains encoding definitions for the messages specified in the
"LegacyPr ot ocol - ASN1- Mbdul e" ASN.1 module. The following design decisions have been made:

— Padding within octets is explicitly specified as padding fields.
— Alignment padding is not specified as explicit padding fields.

D.5.2 Encoding definition for the top-level message structure

D.5.2.1 The encoding object "l egacyPr ot ocol MessagesEncodi ng" specifies how the common parts of the legacy
protocol messages are encoded. The message identifier is specified in ASN.1 as an enumerated type. PER basic
unaligned encodes "nmessage- i d" using the minimum number of bits (i.e., 2) but here we would like to have it encoded
using 8 bits. In addition, we have to specify that "message-i d" is to be used as a determinant for "messages".

D.5.2.2 The encoding object "l egacyPr ot ocol MessagesEncodi ng" is:

legacyProtocolMessagesEncoding #LegacyProtocolMessages ::= {
ENCODE STRUCTURE {
message-id {
ENCODING {
ENCODING-SPACE
SIZE 8}},
messages {
ENCODE STRUCTURE {
STRUCTURED WITH {
ALTERNATIVE
DETERMINED BY field-to-be-used
USING message-id}}
WITH PER-BASIC-UNALIGNED}}
WITH PER-BASIC-UNALIGNED}

D.5.3 Encoding definition for a message structure
D.5.3.1 The encoding object "messagelEncodi ng" specifies how values of "Messagel" are to be encoded:

— The field "b" is present if the field "b- f | ag" contains value TRUE.

— The field "c" is present if the field "c- | en" does not contain value 0. "c- | en" also governs the number of
elements in "c".

— The field "d" is present if there are still octets in an encoding for the message.
D.5.3.2 The encoding object for "Messagel" is:

messagel Encoding #Messagel ::= {
ENCODE STRUCTURE {
b b-encoding

160 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

OPTIONAL-ENCODING {
PRESENCE
DETERMINED BY field-to-be-used
USING b-flag},
¢ octet-aligned-seq-of-with-ext-determinant{< c-len >},
d octet-aligned-seq-of-until-end-of-container
OPTIONAL-ENCODING USE-SET}
WITH PER-BASIC-UNALIGNED}

D.5.4 Encoding for the sequence type "B"

D.5.4.1 Padding of one bit is inserted between the fields "b2" and "b3" ("aux-reserved"). The encoding of "B" is
octet-aligned.

D.5.4.2 The encoding for "B" is:

b-encoding #B ::= {
ENCODE STRUCTURE {
-- Components
b3 {
ALIGNED TO NEXT nibble
ENCODING {
ENCODING-SPACE
SIZE 2
MULTIPLE OF bit }}
-- Structure
STRUCTURED WITH {
ALIGNED TO NEXT octet
ENCODING-SPACE
SIZE self-delimiting-values
MULTIPLE OF bit }}
-- The rest
WITH PER-BASIC-UNALIGNED}

D.5.5 Encoding for an octet-aligned sequence-of type with a length determinant
D.5.5.1 One of the sequence-of types used in the legacy protocol has an explicit length determinant.
D.5.5.2 The encoding is octet-aligned. The number of elements count is determined by the field "l en".

octet-aligned-seq-of-with-ext-determinant{< REFERENCE : len >} #REPETITION ::= {
REPETITION-ENCODING {
ALIGNED TO NEXT octet
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY field-to-be-used
USING len}}

D.5.6 Encoding for an octet-aligned sequence-of type which continues to the end of the PDU
D.5.6.1 The encoding is octet-aligned. The number of elements is determined by the end of the PDU.
D.5.6.2 The encoding object is:

octet-aligned-seq-of-until-end-of-container #REPETITION ::= {
REPETITION-ENCODING {
ALIGNED TO NEXT octet
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER}}

D.5.7 EDM definitions
The EDM definitions are:

LegacyProtocol-EDM-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module4(13)}
ENCODING-DEFINITIONS ::=
BEGIN

EXPORTS LegacyProtocolEncodings;
IMPORTS #LegacyProtocolMessages

ITU-T Rec. X.692 (03/2002) 161

ISO/IEC 8825-3:2003 (E)

FROM LegacyProtocol-ASN1-Module
{ joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module4(11) };

LegacyProtocolEncodings #ENCODINGS ::= {
legacyProtocolMessagesEncoding |
messagelEncoding }

--elc.

END
D.5.8 ELM definitions

The ELM for the legacy protocol is:

LegacyProtocol-ELM-Module { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) elm-module4(12) }
LINK-DEFINITIONS ::=
BEGIN

IMPORTS
LegacyProtocolEncodings FROM LegacyProtocol-EDM-Module
{ joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module4(13) }
#LegacyProtocolMessages FROM LegacyProtocol-ASN1-Module
{ joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asnl-module4(11) };

ENCODE #LegacyProtocolMessages WITH LegacyProtocolEncodings
COMPLETED BY PER-BASIC-UNALIGNED

END

162 ITU-T Rec. X.692 (03/2002)

E1l

E.2

E.3

E4

E.S

E.6

E.7
E.8

E.9

ISO/IEC 8825-3:2003 (E)

Annex E

Support for Huffman encodings

(This annex does not form an integral part of this Recommendation | International Standard)

Huffman encodings are the optimum encodings for a finite set of integer values, where the frequency with which
each value will be transmitted is known.

The encodings are self-delimiting (no length-determinant is needed) and use a small number of bits for frequent
values and a larger number of bits for less frequent values.

There are many possible Huffman encodings. For example, given any such encoding, simply change all "1"s to
"0"s and vice versa, and you have a different (but just as efficient) Huffman encoding. More subtle changes can
also be made to produce other Huffman encodings that are equally efficient.

For Huffman encodings to be efficient for decoders, it is desirable that where successive integer values encode
into the same number of bits, those bits should define successive integer values when interpreted as a positive
integer encoding.

An ECN Huffman encoding has been defined that has this property, and a Microsoft Word 97 macro has been
produced that will generate the syntax for a "MappingIntToBits" mapping (see 19.7) which is both optimal and
easy to decode.

A version of this annex is available which contains a macro button that will take a specification of the integer
values to be encoded and their frequency, and will generate in-line the formal mapping specification conforming
to the ECN notation. (The version of this Annex with the associated macro is freely available from ITU website
at http://www.itu.int/ITU-T/publications/recs.html under X.692 Recommendation, and from ISO website at
http://www.iso.ch/iso/en/ittf/PubliclyAvailableStandards/c034390 ISO_8825-3 2003(E) Annex_E.html) .

The following text contains three examples of ECN Huffman specification.

In the version with the macro, double clicking the button below:
ECN|

will add the ECN Huffman mapping specifications to the text.

The user of the version with the macro may wish to modify the specification of the values to be mapped and their
frequencies to see the encodings that are produced in different cases.

NOTE - In the version with macros, once encoding specifications have been produced, they can be deleted, the ECN Huffman
specification changed, and the macro button again clicked.

E.10

E.11

E.12

E.13

E.14

E.15

The informal syntax for an ECN Huffman specification should be clear from the following examples. All lines
start with an ASN.1 comment marker ("--").

The first line (if the macro is to be used) must contain exactly "ECN Huffman" preceded by two hyphens and a
space, but following lines are not case sensitive and may contain more or less spaces.

The second line is required, and specifies the lowest and highest values that are to be mapped. The range (upper
bound minus lower bound) is limited to 1000, but can include negative values. Not all values in the range need
to be mapped.

Percentages are given for either single values or for ranges of values. It is not necessary for percentages to add
up to 100%, but a warning is given if they do not.

The "REST" line is optional, and provides frequencies for any values in the range not explicitly listed. If
missing, then the mapped values will only be those explicitly specified.

The final line is mandatory, and must contain "End Definition" (in upper or lower case). The formal ECN
encoding specification is inserted (by the macro) after this line.

ITU-T Rec. X.692 (03/2002) 163

ISO/IEC 8825-3:2003 (E)

E.15.1 The first example is:

my-int-encodingl #My-Special-1 ::=
{ USE #BITS
-- ECN Huffman
-- RANGE (-1..10)
---11820%
- 11525%
- 015 15%
--(3..6) IS 10%
-- Rest IS 2%
-- End Definition
-- Mappings produced by "ECN Public Domain Software for Huffman encodings, version 1"
MAPPING TO BITS {
-1 TO '11'B,
0..1TO'01'B..'10'B,
2TO '0000001'B,
3..5TO'0001'B..'0011'B,
6 TO '00001'B,
7.. 8TO '0000010'B .. '0000011'B,
9.. 10 TO '00000000'B .. '00000001'B

}
WITH my-self-delim-bits-encoding }

E.15.2 The second example is:

my-int-encoding2 #My-Special-2 ::=
{ USE #BITS
-- ECN Huffman
-- RANGE (-10..10)
---101S5 20%
- 11525%
- 51S15%
--(7..10) is 10%
-- End Definition
-- Mappings produced by "ECN Public Domain Software for Huffman encodings, version 1"
MAPPING TO BITS {
-10 TO '11'B,
1TO'10'B,
5TO'01'B,
7.. 10 TO'0000'B..'0011'B

}
WITH my-self-delim-bits-encoding }

E.15.3 The third example is:

my-int-encoding3 #My-Special-3 ::=
{ USE #BITS
-- ECN Huffman
-- RANGE (0..1000)
--(0..63) IS 100%
-- REST IS 0%
-- End Definition
-- Mappings produced by "ECN Public Domain Software for Huffiman encodings"
MAPPING TO BITS {
0. 62TO'000001'B..'111111'B,
63 TO '0000001'B ,
64 .. 150 TO '0000000110101001'B .. '0000000111111111'B,
151 .. 1000 TO '00000000000000000'B .. '00000001101010001'B

}
WITH my-self-delim-bits-encoding }

164 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

Annex F

Additional information on the Encoding Control Notation (ECN)

(This annex does not form an integral part of this Recommendation | International Standard)

Additional information and links on the Encoding Control Notation can be found on the following Web site:

. http://asnl.elibel.tm.fi/ecn

ITU-T Rec. X.692 (03/2002) 165

ISO/IEC 8825-3:2003 (E)

G.1

Summary of the ECN notation

(This annex does not form an integral part of this Recommendation | International Standard)

Terminal symbols

The following terminal symbols are used in this Recommendation | International Standard

G.1.1

G.1.2

G.13

166

The following items are defined in clause 8:

anystringexceptnonecend
encodingobjectreference
encodingobjectsetreference

encodingclassreference
Moozt

"o on
.

l'{"
l'} "
l'("
l')"

IF

IMPORTS

IN
LINK-DEFINITIONS
MAPPING

MAX

MIN
MINUS-INFINITY
NON-ECN-BEGIN
NON-ECN-END

n,n NULL
" OPTIONAL-ENCODING
" OPTIONS
ALL ORDERED
AS OUTER
BEGIN PER-BASIC-ALIGNED
BER PER-BASIC-UNALIGNED
BITS PER-CANONICAL-ALIGNED
BY PER-CANONICAL-UNALIGNED
CER PLUS-INFINITY
COMPLETED REFERENCE
DECODE REMAINDER
DER RENAMES
DISTRIBUTION SIZE
ENCODE STRUCTURE
ENCODE-DECODE STRUCTURED
ENCODING-CLASS TO
ENCODING-DEFINITIONS TRANSFORMS
END TRUE
EXCEPT UNION
EXPORTS USE
FALSE USE-SET
FIELDS VALUES
FROM WITH
GENERATES

The following item is defined in Annex A:

REFERENCE

The following items are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1:
bstring "
cstring "
hstring ALL
identifier EXCEPT
modulereference EXPORTS
number FALSE
realnumber FROM
typereference IMPORTS
" MINUS-INFINITY

ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

NULL TRUE
PLUS-INFINITY

G.1.4 The following items are defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 :

word
valuefieldreference
valuesetfieldreference

G.1.5 The following items are defined in ITU-T Rec. X.683 | ISO/IEC 8824-4:

" {<H
">} "

G.2 Productions

G.2.1 The following productions are used in this Recommendation | International Standard, with the items defined in
G.1 as terminal symbols:

ELMDefinition ::=
Moduleldentifier
LINK-DEFINITIONS
Moo
BEGIN
ELMModuleBody
END

ELMModuleBody ::=
Imports ?
EncodingApplicationList

EncodingApplicationList ::=
EncodingApplication
EncodingApplicationList ?

EncodingApplication ::=
ENCODE
SimpleDefinedEncodingClass "," +
CombinedEncodings

CombinedEncodings ::=
WITH
PrimaryEncodings
CompletionClause ?

CompletionClause ::=
COMPLETED BY
SecondaryEncodings

PrimaryEncodings ::= EncodingObjectSet
SecondaryEncodings ::= EncodingObjectSet

EDMDefinition ::=
Moduleldentifier
ENCODING-DEFINITIONS
Moo
BEGIN
EDMModuleBody
END

EDMModuleBody ::=
Exports ?
RenamesAndExports ?
Imports ?
EDMAssignmentList ?

EDMAssignmentList ::=
EDMAssignment
EDMAssignmentList ?

EDMAssignment ::=
EncodingClassAssignment

ITU-T Rec. X.692 (03/2002) 167

ISO/IEC 8825-3:2003 (E)

168

| EncodingObjectAssignment
| EncodingObjectSetAssignment
| ParameterizedAssignment

RenamesAndExports ::=
RENAMES
ExplicitGenerationList ";"

ExplicitGenerationList ::=
ExplicitGeneration
ExplicitGenerationList ?

ExplicitGeneration ::=
OptionalNameChanges
FROM GlobalModuleReference

OptionalNameChanges ::=
NameChanges | GENERATES

NameChanges ::= NameChange NameChanges ?

NameChange ::=
OriginalClassName
AS
NewClassName
IN
NameChangeDomain

OriginalClassName ::= SimpleDefinedEncodingClass | BuiltinEncodingClassReference
NewClassName ::= encodingclassreference

NameChangeDomain ::=
IncludedRegions
Exception ?

Exception ::=
EXCEPT
ExcludedRegions

IncludedRegions ::=
ALL | RegionList

ExcludedRegions ::= RegionList

RegionList ::=
Region "," +
Region ::=
SimpleDefinedEncodingClass |
ComponentReference
ComponentReference ::=
SimpleDefinedEncodingClass
"nn
ComponentIdList
ComponentldList ::=

identifier "." +

EncodingClassAssignment ::=
encodingclassreference

Moot
EncodingClass
EncodingClass ::=

BuiltinEncodingClassReference
EncodingStructure

EncodingObjectAssignment ::=
encodingobjectreference
DefinedOrBuiltinEncodingClass

[Lpp]

EncodingObject

EncodingObjectSetAssignment ::=

ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

encodingobjectsetreference
#ENCODINGS

Moot

EncodingObjectSet
CompletionClause ?

EncodingObjectSet ::=
DefinedOrBuiltinEncodingObjectSet |
EncodingObjectSetSpec

EncodingStructure ::=
TaggedStructure |
UntaggedStructure

TaggedStructure ::=
” ["
TagClass
TagValue ?
” I ”

UntaggedStructure

UntaggedStructure ::=
DefinedEncodingClass
| EncodingStructureField
| EncodingStructureDefn

TagClass ::=
DefinedEncodingClass
| TagClassReference

TagValue ::=
H(" l‘lllmber H)"

EncodingStructureDefn ::=
AlternativesStructure
| RepetitionStructure
| ConcatenationStructure

AlternativesStructure ::=
AlternativesClass
”" { "
NamedFields
”" } "

AlternativesClass ::=
DefinedEncodingClass
| AlternativesClassReference

NamedFields ::= NamedField "," +

NamedField ::=
identifier
EncodingStructure

RepetitionStructure ::=
RepetitionClass
” {Vl
identifier ?
EncodingStructure
'l}"

Size?
RepetitionClass ::=

DefinedEncodingClass
| RepetitionClassReference

ConcatenationStructure ::=
ConcatenationClass
” {"
ConcatComponents

"}"

ConcatenationClass ::=
DefinedEncodingClass

ITU-T Rec. X.692 (03/2002) 169

ISO/IEC 8825-3:2003 (E)

170

| ConcatenationClassReference

ConcatComponents ::=
ConcatComponent "," *

ConcatComponent ::=
NamedField
ConcatComponentPresence ?

ConcatComponentPresence ::=
OPTIONAL-ENCODING
OptionalClass

OptionalClass ::=
DefinedEncodingClass
| OptionalityClassReference

DefinedEncodingClass ::=
encodingclassreference
| ExternalEncodingClassReference
| ParameterizedEncodingClass

DefinedOrBuiltinEncodingClass ::=
DefinedEncodingClass
| BuiltinEncodingClassReference

DefinedEncodingObject ::=
encodingobjectreference
| ExternalEncodingObjectReference
| ParameterizedEncodingObject

DefinedEncodingObjectSet ::=
encodingobjectsetreference
| ExternalEncodingObjectSetReference
| ParameterizedEncodingObjectSet

DefinedOrBuiltinEncodingObjectSet ::=
DefinedEncodingObjectSet
| BuiltinEncodingObjectSetReference

BuiltinEncodingObjectSetReference ::=
PER-BASIC-ALIGNED

| PER-BASIC-UNALIGNED

| PER-CANONICAL-ALIGNED

| PER-CANONICAL-UNALIGNED

| BER

| CER

| DER

ExternalEncodingClassReference ::=
modulereference "." encodingclassreference

| modulereference "." BuiltinEncodingClassReference

ExternalEncodingObjectReference ::=
modulereference "." encodingobjectreference

ExternalEncodingObjectSetReference ::=
modulereference "." encodingobjectsetreference

EncodingObjectSetSpec ::=
mnyn
{
EncodingObjects UnionMark *
H}"
EncodingObjects ::=

DefinedEncodingObject
| DefinedEncodingObjectSet

UnionMark ::=
”" | ” |

UNION

EncodingObject ::=
DefinedEncodingObject
| DefinedSyntax

ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

| EncodeWith

| EncodeByValueMapping

| EncodeStructure

| DifferentialEncodeDecodeObject
| EncodingOptionsEncodingObject
| NonECNEncodingObject

EncodeWith ::=
"{" ENCODE CombinedEncodings "}"

EncodeByValueMapping ::=
” {"
USE
DefinedOrBuiltinEncodingClass
MAPPING
ValueMapping
WITH
ValueMappingEncodingObjects
” } "

ValueMappingEncodingObjects ::=
EncodingObject
| DefinedOrBuiltinEncodingObjectSet

DifferentialEncodeDecodeObject ::=
nyn
{V
ENCODE-DECODE
SpecForEncoding
DECODE AS IF
SpecForDecoders

'l}"
SpecForEncoding ::= EncodingObject
SpecForDecoders ::= EncodingObject

EncodingOptionsEncodingObject ::=
nyn
{
OPTIONS
EncodingOptionsList
WITH
AlternativesEncodingObject

” } "
EncodingOptionsList ::= OrderedEncodingObjectList
AlternativesEncodingObject ::= EncodingObject

NonECNEncodingObject::=
NON-ECN-BEGIN
Assignedldentifier
anystringexceptnonecnend
NON-ECN-END

EncodeStructure ::=
” {"
ENCODE STRUCTURE
nyn
{
ComponentEncodingList
StructureEncoding ?
"}"
CombinedEncodings ?

"}"

StructureEncoding ::=
STRUCTURED WITH
TagEncoding ?
EncodingOrUseSet

ComponentEncodingList ::=
ComponentEncoding "," *

ComponentEncoding ::=
NonOptionalComponentEncodingSpec

ITU-T Rec. X.692 (03/2002) 171

ISO/IEC 8825-3:2003 (E)

| OptionalComponentEncodingSpec

NonOptionalComponentEncodingSpec ::=
identifier ?
TagAndElementEncoding

OptionalComponentEncodingSpec ::=
identifier
TagAndElementEncoding
OPTIONAL-ENCODING
OptionalEncoding

TagAndElementEncoding ::=
TagEncoding ?
EncodingOrUseSet

TagEncoding ::= "[" EncodingOrUseSet "|"
OptionalEncoding ::= EncodingOrUseSet

EncodingOrUseSet ::=
EncodingObject
| USE-SET

BuiltinEncodingClassReference ::=
BitfieldClassReference
| AlternativesClassReference
| ConcatenationClassReference
| RepetitionClassReference
| OptionalityClassReference
| TagClassReference
| EncodingProcedureClassReference
BitfieldClassReference ::=
#NUL
| #BOOL
| #INT
| #BITS
| #OCTETS
| #CHARS
| #PAD
| #BIT-STRING
| #BOOLEAN
| #CHARACTER-STRING
| #EMBEDDED-PDV
| #ENUMERATED
| #EXTERNAL
| #INTEGER
| #NULL
| #OBJECT-IDENTIFIER
| #OCTET-STRING
| #OPEN-TYPE
| #REAL
| #RELATIVE-OID
| #GeneralizedTime
| #UTCTime
| #ObjectDescriptor
| #BMPString
| #GeneralString
| #GraphicString
| #IASString
| #NumericString
| #PrintableString
| #TeletexString
| #UniversalString
| #UTF8String
| #VideotexString
| #VisibleString

AlternativesClassReference ::=
#ALTERNATIVES
| #CHOICE

172 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

ConcatenationClassReference ::=
#CONCATENATION
| #SEQUENCE
| #SET

RepetitionClassReference ::=
#REPETITION
| #SEQUENCE-OF

| #SET-OF

OptionalityClassReference ::=
#OPTIONAL

TagClassReference ::=
#TAG

EncodingProcedureClassReference ::=
#TRANSFORM
| #CONDITIONAL-INT
| #CONDITIONAL-REPETITION
| #OUTER

EncodingStructureField ::=
#NUL
#BOOL
#INT Bounds?
#BITS Size?
#OCTETS Size?
#CHARS Size?
#PAD
#BIT-STRING Size?
#BOOLEAN
#CHARACTER-STRING
#EMBEDDED-PDV

|

|

|

|

|

|

|

|

|

|

| #ENUMERATED Bounds?
| #EXTERNAL

| #INTEGER Bounds?
| #NULL

| #OBJECT-IDENTIFIER

| #OCTET-STRING Size?
| #OPEN-TYPE

| #REAL

| #RELATIVE-OID

| #GeneralizedTime

| #UTCTime

| #ObjectDescriptor Size?
| #BMPString Size?
| #GeneralString Size?
| #GraphicString Size?
| #IASString Size?
| #NumericString Size?
| #PrintableString Size?
| #TeletexString Size?
| #UniversalString Size?
| #UTF8String Size?
| #VideotexString Size?
| #VisibleString Size?

Bounds ::="(" EffectiveRange ")"

EffectiveRange ::=
MinMax

| Fixed
Size ::="(" SIZE SizeEffectiveRange ")"
SizeEffectiveRange ::=

"(" EffectiveRange ")"
MinMax ::=

ValueOrMin

""H

ValueOrMax

ITU-T Reec. X.692 (03/2002) 173

ISO/IEC 8825-3:2003 (E)

174

ValueOrMin ::=
SignedNumber
| MIN

ValueOrMax ::=
SignedNumber
| MAX

Fixed ::= SignedNumber

ValueMapping ::=
MappingByExplicitValues
MappingByMatchingFields

MappingByTransformEncodingObjects

MappingByValueDistribution

|

|

| MappingByAbstractValueOrdering
|

| MappingIntToBits

MappingByExplicitValues ::=
VALUES
” {Vl
MappedValues "," +
” } "

MappedValues ::=
MappedValuel
TO
MappedValue2

MappedValuel ::= Value
MappedValue2 ::= Value

MappingByMatchingFields ::=
FIELDS

MappingByTransformEncodingObjects ::=
TRANSFORMS

” {"
OrderedTransformList
"}"
OrderedTransformList ::= Transform "," +

Transform ::= EncodingObject

MappingByAbstractValueOrdering ::=
ORDERED VALUES

MappingByValueDistribution ::=
DISTRIBUTION
” {"
Distribution "," +
” } "
Distribution ::=
SelectedValues
TO
identifier

SelectedValues ::=
SelectedValue
| DistributionRange
| REMAINDER

DistributionRange ::=

DistributionRangeValuel

"nn

DistributionRangeValue2
SelectedValue ::= SignedNumber
DistributionRangeValuel ::= SignedNumber

DistributionRangeValue2 ::= SignedNumber

ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

MappingIntToBits ::=
TO BITS
” {Vl
MappedIntToBits "," +
'l}"
MappedIntToBits ::=
SingleIntValMap
| IntValRangeMap

SingleIntValMap ::=
IntValue
TO
BitValue

IntValue ::= SignedNumber

BitValue ::=
bstring |
hstring

IntValRangeMap ::=
IntRange
TO
BitRange

IntRange ::=
IntRangeValuel

"non

IntRangeValue2

BitRange ::=
BitRangeValuel

"nn

BitRangeValue2
IntRangeValuel ::= SignedNumber
IntRangeValue2 ::= SignedNumber

BitRangeValuel ::=
bstring |
hstring

BitRangeValue2 ::=
bstring |
hstring

G.2.2 The following productions are defined ITU-T Rec. X.680 | ISO/IEC 8824-1, as modified by Annex A, with the
items defined in G.1 as terminal symbols:

NOTE - Struck productions are not allowed in ECN.

Moduleldentifier ::=
modulereference
Definitiveldentifier ?

Definitiveldentifier ::=
"{" DefinitiveObjldComponentList "}"

DefinitiveObjIdComponentList ::=
DefinitiveObjldComponent
| DefinitiveObjldComponent DefinitiveObjldComponentList
DefinitiveObjIdComponent ::=
NameForm
| DefinitiveNumberForm
| DefinitiveNameAndNumberForm

NameForm ::= identifier

DefinitiveNumberForm ::= number

ITU-T Reec. X.692 (03/2002) 175

ISO/IEC 8825-3:2003 (E)
DefinitiveNameAndNumberForm ::= identifier " (" DefinitiveNumberForm ")"

Exports ::=
EXPORTS SymbolsExported? ";" |
EXPORTS ALL ";"

SymbolsExported ::= SymbolList
Imports ::= IMPORTS SymbolsImported? ";"
SymbolsImported ::= SymbolsFromModuleList

SymbolsFromModuleList ::=
SymbolsFromModule
SymbolsFromModuleList SymbolsFromModule

SymbolsFromModule ::=
SymbolList
FROM
GlobalModuleReference

GlobalModuleReference ::=
modulereference AssignedIdentifier

Assignedldentifier ::=
Definitiveldentifier
| empty

SymbolList ::=
Symbol |
SymbolList "," Symbol

Symbol ::=
Reference
| ParameterizedReference
| BuiltinEncodingClassReference

Reference ::=
encodingclassreference
| ExternalEncodingClassReference
| encodingobjectreference
| encodingobjectsetreference

Value ::=
BuiltinValue
ReferencedValue
ObicetClassEieldVal

BuiltinValue ::=
BitStringValue
| BooleanValue
| CharacterStringValue
| ChoiceValue
HEmbedded PDV NV alue
| EnumeratedValue
HexternalValue
HaustaneeOValue

| IntegerValue

| NullValue

| ObjectldentifierValue
| OctetStringValue
| RealValue

| RelativeOIDValue
FSequenceValue
FSequenceONV alue
FSetValue

FSetOR alue
FaggedValue

176 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

BitStringValue ::=
bstring
| hstring

"nyn 3 H mn

'l!" H;"

BooleanValue ::=
TRUE
| FALSE

CharacterStringValue ::=
RestrictedCharacterStringValue

HonrestrictedCharacterStringValue

RestrictedCharacterStringValue ::=
cstring
| CharacterStringList
| Quadruple
| Tuple

CharacterStringList ::= "{" CharSyms "}"
CharSyms ::=

CharsDefn
| CharSyms "," CharsDefn

CharsDefn ::=
cstring

| Quadruple

| Tuple

| AbsoluteCharReference
Quadruple ::="{" Group "," Plane "," Row "," Cell "}"
Group ::= number
Plane ::= number
Row ::= number
Cell ::= number

Tuple ::="{" TableColumn "," TableRow "}"
TableColumn ::= number
TableRow ::= number

AbsoluteCharReference ::=
Moduleldentifier

"nn

valuereference
ChoiceValue ::= identifier ":" Value
EnumeratedValue ::= identifier

IntegerValue ::=
SignedNumber
identifi

SignedNumber ::=
number |
"-" number

NullValue ::= NULL

ObjectldentifierValue ::=
"{" ObjldComponentsList "}"

ITU-T Rec. X.692 (03/2002) 177

ISO/IEC 8825-3:2003 (E)

ObjldComponentsList ::=
ObjldComponents |
ObjldComponents ObjldComponentsList

ObjldComponents ::=
NameForm |
NumberForm |
NameAndNumberForm

NameForm ::= identifier

NumberForm ::=
number

DefinedValue

NameAndNumberForm ::= identifier " (" NumberForm ")"

OctetStringValue ::=
bstring |
hstring

RealValue ::=
NumericRealValue
| SpecialRealValue

NumericRealValue ::=
0
frealnumber
| "-" realnumber
| SequenceValue

SpecialRealValue ::=
PLUS-INFINITY
| MINUS-INFINITY

RelativeOIDValue ::="{" RelativeOidComponentsList "}"

RelativeOidComponentsList ::=
RelativeOidComponents
| RelativeOidComponents RelativeQidComponentsList

RelativeOidComponents ::=
NumberForm
| NameAndNumberForm

|—DefinedValue

SequenceValue ::=
"{" ComponentValueList "}" |

'l{" "}H
ComponentValueList ::=
NamedValue

| ComponentValueList "," NamedValue

NamedValue ::=
identifier Value

"nyn H mn

"EH Vl"l

178 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

'l!" ";H

nyn H "mn

'l!" ";H

ValueSet ::= "{" ElementSetSpecs "}"

ElementSetSpecs ::=
RootElementSetSpec

"maen ”"
0 o

”" "mnn 13
—|—Add-lt—leﬂ-a-l-E-lemeﬂtSetS-pee... 0
"o n " onn it
—'—RQM, o 0

RootElementSetSpec ::= ElementSetSpec

ElementSetSpec ::=
Unions
| ALL Exclusions

Exclusions ::= EXCEPT Elements

Unions ::=
Intersections
| UElems UnionMark Intersections

UElems ::= Unions

Intersections ::=
IntersectionElements

EL I ionMark 1 ionEl
IntersectionElements ::= Elements ElemsExelusions

UnionMark ::=
”" | ”

I
UNION

Elements ::=
SubtypeElements

| ObjeetSetElements
+"(" ElementSetSpec ")"

SubtypeElements ::=
SingleValue

+ValueRange
|PermittedAlphabet
SizeC .
HhypeConstraint
HmunerFypeConstraints

SingleValue ::= Value

G.2.3 The following productions are defined ITU-T Rec. X.681 | ISO/IEC 8824-2, as modified by Annex B, with the
items defined in G.1 as terminal symbols:

DefinedSyntax ::= "{" DefinedSyntaxList ? "}"
DefinedSyntaxList ::= DefinedSyntaxToken DefinedSyntaxList ?

DefinedSyntaxToken ::=
Literal
| Setting
Literal ::=
word

ITU-T Rec. X.692 (03/2002) 179

ISO/IEC 8825-3:2003 (E)

poue

Setting ::=
Value

| ValueSet
| OrderedValueList
| EncodingObject
| EncodingObjectSet
| OrderedEncodingObjectList
| DefinedOrBuiltinEncodingClass
| OUTER

OrderedValueList ::="{" Value "," +"}"
OrderedEncodingObjectList ::= "{" EncodingObject "," + "}"
InstanceOfValue ::= Value

EncodingClassFieldType ::=
DefinedEncodingClass

"nan

FieldName
FieldName ::= PrimitiveFieldName "." +

PrimitiveFieldName ::=
valuefieldreference
| valuesetfieldreference
| orderedvaluelistfieldreference

G.2.4 The following productions are defined ITU-T Rec. X.683 | ISO/IEC 8824-4, as modified by Annex C, with the
items defined in G.1 as terminal symbols:

ParameterizedAssignment ::=
ParameterizedEncodingObjectAssignment

| ParameterizedEncodingClassAssignment

| ParameterizedEncodingObjectSetAssignment

ParameterizedEncodingObjectAssignment ::=
encodingobjectreference
ParameterList
DefinedOrBuiltinEncodingClass

Moozt

EncodingObject

ParameterizedEncodingClassAssignment ::=
encodingclassreference
ParameterList

Moozt

EncodingClass

ParameterizedEncodingObjectSetAssignment ::=
encodingobjectsetreference
ParameterList
#ENCODINGS

(Lo 1]
EncodingObjectSet
ParameterList ::="{<" Parameter "," + ">}"
Parameter ::=
ParamGovernor ":" DummyReference

| DummyReference

ParamGovernor ::=
Governor

|-DummyGeovernor

Governor ::=
EncodingClassFieldType

180 ITU-T Rec. X.692 (03/2002)

ISO/IEC 8825-3:2003 (E)

| REFERENCE
| DefinedOrBuiltinEncodingClass
| #ENCODINGS

DummyReference ::=
encodingclassreference
| valuereference
| typereference
| identifier
| encodingobjectreference
| encodingobjectsetreference

ParameterizedReference ::=
Reference
| Reference "{<" ">}"

ParameterizedEncodingObject ::=
SimpleDefinedEncodingObject
ActualParameterList

SimpleDefinedEncodingObject ::=
ExternalEncodingObjectReference
| encodingobjectreference

ParameterizedEncodingObjectSet ::=
SimpleDefinedEncodingObjectSet
ActualParameterList

SimpleDefinedEncodingObjectSet ::=
ExternalEncodingObjectSetReference
| encodingobjectsetreference

ParameterizedEncodingClass ::=
SimpleDefinedEncodingClass
ActualParameterList

SimpleDefinedEncodingClass ::=
ExternalEncodingClassReference
| encodingclassreference

ActualParameterList ::= "{<" ActualParameter "," + ">}"

ActualParameter ::=
Value

| ValueSet
| OrderedValueList
| DefinedOrBuiltinEncodingClass
| EncodingObject
| EncodingObjectSet
| OrderedEncodingObjectList
| identifier
| STRUCTURE
| OU

ITU-T Rec. X.692 (03/2002) 181

Series A
Series B
Series C
Series D
Series E
Series F
Series G
Series H
Series |

Series J

Series K
Series L

Series M

Series N
Series O
Series P

Series Q
Series R
Series S

Series T
Series U
Series V
Series X
Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2003

	ITU-T Rec. X.692 (03/2002) Information technology - ASN.1 encoding rules: Specification of Encoding Control Notation (ECN)
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 ASN.1 definitions
	3.2 ECN-specific definitions

	4 Abbreviations
	5 Definition of ECN syntax
	6 Encoding conventions and notation
	7 The ECN character set
	8 ECN lexical items
	8.1 Encoding object references
	8.2 Encoding object set references
	8.3 Encoding class references
	8.4 Reserved word items
	8.5 Reserved encoding class name items
	8.6 Non-ECN item

	9 ECN Concepts
	9.1 Encoding Control Notation (ECN) specifications
	9.2 Encoding classes
	9.3 Encoding structures
	9.4 Encoding objects
	9.5 Encoding object sets
	9.6 Defining new encoding classes
	9.7 Defining encoding objects
	9.8 Differential encoding-decoding
	9.9 Encoders options in encodings
	9.10 Properties of encoding objects
	9.11 Parameterization
	9.12 Governors
	9.13 General aspects of encodings
	9.14 Identification of information elements
	9.15 Reference fields and determinants
	9.16 Replacement classes and structures
	9.17 Mapping abstract values onto fields of encoding structures
	9.18 Transforms and transform composites
	9.19 Contents of Encoding Definition Modules
	9.20 Contents of the Encoding Link Module
	9.21 Defining encodings for primitive encoding classes
	9.22 Application of encodings
	9.23 Combined encoding object set
	9.24 Application point
	9.25 Conditional encodings
	9.26 Changes to ASN.1 Recommendations | International Standards

	10 Identifying encoding classes, encoding objects, and encoding object sets
	11 Encoding ASN.1 types
	11.1 General
	11.2 Built-in encoding classes used for implicitly generated encoding structures
	11.3 Simplification and expansion of ASN.1 notation for encoding purposes
	11.4 The implicitly generated encoding structure

	12 The Encoding Link Module (ELM)
	12.1 Structure of the ELM
	12.2 Encoding types

	13 Application of encodings
	13.1 General
	13.2 The combined encoding object set and its application

	14 The Encoding Definition Module (EDM)
	15 The renames clause
	15.1 Explicitly generated and exported structures
	15.2 Name changes
	15.3 Specifying the region for name changes

	16 Encoding class assignments
	16.1 General
	16.2 Encoding structure definition
	16.3 Alternative encoding structure
	16.4 Repetition encoding structure
	16.5 Concatenation encoding structure

	17 Encoding object assignments
	17.1 General
	17.2 Encoding with a defined syntax
	17.3 Encoding with encoding object sets
	17.4 Encoding using value mappings
	17.5 Encoding an encoding structure
	17.6 Differential encoding-decoding
	17.7 Encoding options
	17.8 Non-ECN definition of encoding objects

	18 Encoding object set assignments
	18.1 General
	18.2 Built-in encoding object sets

	19 Mapping values
	19.1 General
	19.2 Mapping by explicit values
	19.3 Mapping by matching fields
	19.4 Mapping by #TRANSFORM encoding objects
	19.5 Mapping by abstract value ordering
	19.6 Mapping by value distribution
	19.7 Mapping integer values to bits

	20 Defining encoding objects using defined syntax
	21 Types used in defined syntax specification
	21.1 The Unit type
	21.2 The EncodingSpaceSize type
	21.3 The EncodingSpaceDetermination type
	21.4 The UnusedBitsDetermination type
	21.5 The OptionalityDetermination type
	21.6 The AlternativeDetermination type
	21.7 The RepetitionSpaceDetermination type
	21.8 The Justification type
	21.9 The Padding type
	21.10 The Pattern and Non-Null-Pattern types
	21.11 The RangeCondition type
	21.12 The SizeRangeCondition type
	21.13 The ReversalSpecification type
	21.14 The ResultSize type
	21.15 The HandleValue type

	22 Commonly used encoding property groups
	22.1 Replacement specification
	22.2 Pre-alignment and padding specification
	22.3 Start pointer specification
	22.4 Encoding space specification
	22.5 Optionality determination
	22.6 Alternative determination
	22.7 Repetition space specification
	22.8 Value padding and justification
	22.9 Identification handle specification
	22.10 Concatenation specification
	22.11 Contained type encoding specification
	22.12 Bit reversal specification

	23 Defined syntax specification for bit-field and constructor classes
	23.1 Defining encoding objects for classes in the alternatives category
	23.2 Defining encoding objects for classes in the bitstring category
	23.3 Defining encoding objects for classes in the boolean category
	23.4 Defining encoding objects for classes in the characterstring category
	23.5 Defining encoding objects for classes in the concatenation category
	23.6 Defining encoding objects for classes in the integer category
	23.7 Defining encoding objects for the #CONDITIONAL-INT class
	23.8 Defining encoding objects for classes in the null category
	23.9 Defining encoding objects for classes in the octetstring category
	23.10 Defining encoding objects for classes in the optionality category
	23.11 Defining encoding objects for classes in the pad category
	23.12 Defining encoding objects for classes in the repetition category
	23.13 Defining encoding objects for the #CONDITIONAL-REPETITION class
	23.14 Defining encoding objects for classes in the tag category
	23.15 Defining encoding objects for classes in the other categories

	24 Defined syntax specification for the #TRANSFORM encoding class
	24.1 Summary of encoding properties and defined syntax
	24.2 Source and target of transforms
	24.3 The int-to-int transform
	24.4 The bool-to-bool transform
	24.5 The bool-to-int transform
	24.6 The int-to-bool transform
	24.7 The int-to-chars transform
	24.8 The int-to-bits transform
	24.9 The bits-to-int transform
	24.10 The char-to-bits transform
	24.11 The bits-to-char transform
	24.12 The bit-to-bits transform
	24.13 The bits-to-bits transform
	24.14 The chars-to-composite-char transform
	24.15 The bits-to-composite-bits transform
	24.16 The octets-to-composite-bits transform
	24.17 The composite-char-to-chars transform
	24.18 The composite-bits-to-bits transform
	24.19 The composite-bits-to-octets transform

	25 Complete encodings and the #OUTER class
	25.1 Encoding properties, syntax and purpose for the #OUTER class
	25.2 Encoder actions for #OUTER
	25.3 Decoder actions for #OUTER

	Annex A - Addendum to ITU-T Rec. X.680 | ISO/IEC 8824-1
	A.1 Exports and imports clauses
	A.2 Addition of REFERENCE
	A.3 Notation for character string values
	Annex B - Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2
	B.1 Definitions
	B.2 Additional lexical items
	B.3 Addition of "ENCODING-CLASS"
	B.4 FieldSpec additions
	B.5 Fixed-type ordered value list field spec
	B.6 Fixed-class encoding object field spec
	B.7 Variable-class encoding object field spec
	B.8 Fixed-class encoding object set field spec
	B.9 Fixed-class ordered encoding object list field spec
	B.10 Encoding class field spec
	B.11 Ordered value list notation
	B.12 Ordered encoding object list notation
	B.13 Primitive field names
	B.14 Additional reserved words
	B.15 Definition of encoding objects
	B.16 Additions to "Setting"
	B.17 Encoding class field type
	Annex C - Addendum to ITU-T Rec. X.683 | ISO/IEC 8824-4
	C.1 Parameterized assignments
	C.2 Parameterized encoding assignments
	C.3 Referencing parameterized definitions
	C.4 Actual parameter list
	Annex D
 - Examples
	D.1 General examples
	D.2 Specialization examples
	D.3 Explicitly generated structure examples
	D.4 A more-bit encoding example
	D.5 Legacy protocol specified with tabular notation
	Annex E - Support for Huffman encodings
	Annex F - Additional information on the Encoding Control Notation (ECN)
	Annex G - Summary of the ECN notation
	G.1 Terminal symbols
	G.2 Productions

