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1 Introduction

In an article I wrote for the C/C++ Users Journal ([Sto03b]), I described the
basics of using the Boehm Collector in C & C++ programs, & I gave reasons
that garbage collectors & destructor functions can coexist just fine – because
the cases where they don’t aren’t very important.

In this essay, my second-to-last about garbage collection1, I’ll explain why
you should use garbage collection, why the “performance penalty” isn’t, & why
some nifty ideas about variants on garbage collection aren’t so nifty. Then I’ll
say no more about garbage collection. I’ve spent a lot of breath & keystrokes
trying to convince people to use garbage collection, & if someone doesn’t believe
me now, he’ll never understand (until garbage collection becomes the new vogue,
at which time he’ll ride the fad with proclamations of life-long devotion).

1.1 Terminology

One problem with garbage collection is its name. “Garbage collection” tells us
we’re cleaning up & throwing something out, but it doesn’t tell us what. It
also leaves to the imagination how much responsibility the cleaner (the garbage
collector) has when the cleaning up analogy is transposed into programming
fact.

A better name is automatic memory management. Not only is this name
more descriptive, but it also reminds us of the limits of responsibility on a
garbage collector. It manages memory, not objects, so it is responsible for hon-
oring requests to allocate memory & for recycling memory when appropriate. It
is not responsible for destroying objects or releasing other resources. This better
name for the thing also reminds us that it’s automatic, with the benefits & dis-
advantages that accompany automation: reduced cost in one area (programmer
time) for an increased cost in another (run-time). The increased run-time isn’t
necessarily bad. After all, it would theoretically be possible to hand-compile
programs to more efficient object code than a compiler can generate, so why
don’t people habitually hand-compile their programs?

2 Data Structures

Garbage collection allows you to use more complex data structures without
writing extra code. Here’s an example.

Let’s say I want to make parallel, growing lists, & periodically I want to chop-
off a list & reclaim the memory it occupied. (Why? Hush, it’s an example.)
Figure 1 shows pseudo-code to do it. This example is essentially the same as
the performance test I showed in [Sto03a].

Notice the comment that says “Must reclaim memory here”. In this example
of singly linked lists, I suspect almost any programmer can see that looping over

1My last will describe a C++ allocator class template implemented for the Boehm collector.
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; A node in a list

struct node { struct node *next; ... };

; An array to hold all the lists

struct node a[100];

; Return true 1/10th of the time.

boolean

one_in_ten () { ... };

while not end-of-program {

for i = 0; i < 100; ++i {

if one_in_ten () {

; Chop-off the list

; Must reclaim memory here!

a[i].next = NULL;

} else {

; Extend the list.

struct node *tmp = malloc (sizeof *tmp);

tmp->next = a[i].next;

a[i].next = tmp;

}

}

}

Figure 1: Parallel, growing lists
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the items in the list & calling free on each would get the job done just fine.
Garbage collection isn’t needed for this.

Watch what happens when the data structure gets just a little more complex.
Let’s say that besides extending & chopping a list, we can replace it with the
list from another element of the array. Figure 2 shows pseudo-code for this new
data structure.

Notice the two comments that say “Reclaim memory here, but be careful”.
The reason you must be careful when you reclaim a chopped list or a list that
is chopped because of crossover is that a node in a chopped list could be in
another list, too. You can’t just free every node in a chopped list because a
node might be in another list, too. That could lead to dangling pointers and
multiple deallocations in the same program. (Just the kind of bugs that make
me pull out my hair while I waste an entire weekend tracking them down.)

To free a chopped list from Figure 2, you’ll need to implement some form of
garbage collection. Reference counting would work just fine. If you program in
C++, you could use smart pointers that know about reference counting. You
might implement your own smart pointer library. It should take just a few days
to debug it & get it right. Be sure to tell your project manager about it so she
can pad the already tight schedule.

C programmers don’t have smart pointers, so they might have to build the
reference counting into struct node. Or maybe there’s a clever solution with
macros.

But wait, it gets better. Notice that there are no cycles in the lists. What
happens if we extend the “list crossover” program so that we can append a
pre-existing list to another one. Here is the pseudo-code for the new example:2

; A node in a list

struct node { struct node *next; ... };

; An array to hold all the lists

struct node a[100];

; Return true 1/10th of the time.

boolean

one_in_ten () { ... };

; Find the last node in a[i], then make

; its ’next’ point to the same element

; some other a[j].next points to. In

; other words, it appends the a[j] list

; to the a[i] list.

; When finding the last item in a[i],

; must take care not to loop forever

; in case a[i] is circular.

2I would have made it a figure, like the previous two examples, but it is too big for a page
of paper.
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; A node in a list

struct node { struct node *next; ... };

; An array to hold all the lists

struct node a[100];

; Return true 1/10th of the time.

boolean

one_in_ten () { ... };

while not end-of-program {

for i = 0; i < 100; ++i {

if one_in_ten () {

; Chop-off the list

; Reclaim memory here, but be careful.

a[i].next = NULL;

} else if one_in_ten () {

; Crossover. Drop this list & replace

; it with the one from another element

; of the array.

; Reclaim memory here, but be careful.

a[i].next = NULL;

; Select another element from ’a’,

; make a[i] point to its list, too.

int j = rand () % 100;

a[i].next = a[j].next;

} else {

; Extend the list.

struct node *tmp = malloc (sizeof *tmp);

tmp->next = a[i].next;

a[i].next = tmp;

}

}

}

Figure 2: Parallel, growing lists that can cross-over. Requires garbage collection.
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void

append_random (int i) { ... }

while not end-of-program {

for i = 0; i < 100; ++i {

if one_in_ten () {

; Chop-off the list

; Reclaim memory here, but be careful.

a[i].next = NULL;

} else if one_in_ten () {

; Crossover. Drop this list & replace

; it with the one from another element

; of the array.

; Reclaim memory here, but be careful.

a[i].next = NULL;

; Select another element from ’a’,

; make a[i] point to its list, too.

int j = rand () % 100;

a[i].next = a[j].next;

} else if one_in_ten () {

; Append a randomly selected list

; from the array to a[i].

append_random (i);

} else {

; Extend the list.

struct node *tmp = malloc (sizeof *tmp);

tmp->next = a[i].next;

a[i].next = tmp;

}

}

}

In this new program, there can be circular lists. Maybe more complex,
more general structures can happen. I don’t know. In any case, reclaiming
the memory occupied by a chopped list got a lot more difficult. Reference
counting won’t hack it now. Do you know an algorithm that would? How
long would it take to find one by research? How complex will that algorithm
be? How long will it take to implement? Will it be fast enough? How will
it interact with other parts of a program? Such an algorithm is effectively a
general purpose garbage collector, so why not use a pre-existing, general-purpose
garbage collection library?

My point is that a lot of classes of data structures which were infeasible
with manual memory management suddenly become accessible when you use a
garbage collector.
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The three examples in this section are from an abstract programming world,
not from an “I’ve actually needed to do that” practical programming world.
I wanted to show how simple changes to a simple program can lead to data
structures that are infeasible to use without garbage collection.

Now for some more practical examples. They’re still hypothetical, but they
are more practical.

3 Practical Examples

3.1 Object Database

Think about an object-oriented database of all the people & assets in my com-
pany. It contains employees, computers, chairs, desks, offices to contain them,
the projects that occupy them, schedules, pay rates, benefits plans, times when
employees will be on vacation, & who knows what else.

Right here, there is a need for garbage collection. Given an employee, I
probably want to know what benefit plan he chose, which implies links from
employees to their benefits plans. However, given a benefit plan, I might want
to know which employees chose it, which implies links from benefit plans to
employees. So right there, the database has memory management concerns; I
can’t just delete an employee & expect things to work. Since the circularity
is shallow (employee to benefits, with no intermediate objects), I could write a
special “delete an employee” function, but how about deleting a benefit plan?

What about networks of circularly linked objects that are not as apparent?
What if, for each employee, my database keeps an object for all that employee’s
relatives. (Maybe I use it to suggest benefits plans or to estimate the expense for
an employee to move to another state (from which I could infer the likelihood
that he’ll quit if I don’t give him a raise), or what if I’m just a Big Brother
bastard who wants to keep all the information I can on all my employees.) Now,
let’s say that I hire an employee’s child. Now we have a multiple-reference issue
because one person record (the employee’s child) is the target of links from the
employee & from my database’s set of employees. What if the child becomes the
employee’s boss or if they work for different departments which communicate,
& I record inter-departmental communication paths in the database? Now I
have circular references.

What if there are more devious, less easily recognizable cycles in the data?
Do I pay database architects to find them all & write special code for them?
How much code will that require? Too much for the database? What if they
miss a type of cycle? What if they make another mistake (which we all do)? If
the database crashes, what happens to my company?

The risk can be greatly reduced, maybe eliminated, by using garbage collec-
tion.
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3.2 Graph Problems

Some problems from computing theory are often expressed as graph problems.
A whole lot of problems from NP-completeness are like this. Sure, there are
techniques for flattening the data structures of many of these problems into
arrays that don’t require much memory management effort, but what if the
flattening technique obscures the real solution algorithm? Wouldn’t it be easier
to rely on a garbage collector to manage the memory so you could manipulate
data that is most directly & simply related to the problem?

Many programmers believe that these types of problems are purely in the
realm of academic theory & not useful to the working programmer. I know those
programmers are wrong. Solutions for these types of problems can be useful to
the working programmer on a daily basis. One reason working programmers
don’t recognize it might be that the tricks for flattening the data obscure the
algorithm & its general usefulness.3

4 Interfaces

Another advantage of garbage collection is that it simplifies your interfaces. C
& C++ programmers are intimately & sometimes painfully familiar with the
issue of “ownership”. That is, we often have to define rules for which container
owns some dynamically allocated objects & will be responsible for deleting them.
Sometimes, it’s just a case of declaring who the owner is, but at other times,
it’s a whole lot more difficult.

Garbage collection gets rid of that in two ways. First, you don’t need to
create rules about ownership. The garbage collector will recycle the memory
when appropriate. With garbage collection, it becomes easier to allow an object
to exist in multiple containers or to be “known” by other objects. In fact, the
issue of containment shifts slightly. It’s no longer a case of which collection
contains some object; it’s an issue of which collections can be used to navigate
to the object. I suspect thereis a performance improvement because you don’t
need to copy objects as often.

Garbage collection also simplifies function calls. If you want to allow another
object to access this object’s state, just return a pointer to the collection. You
don’t need to make a copy of the collection, so you might get a performance
improvement. You don’t need to define cumbersome interfaces that copy all the
objects into a collection specified by the caller. Your interfaces become simpler
& more efficient.

I wish I could think of an example because I’m sure that most people who
have not used a garbage collector have difficulty imagining these benefits I’m
describing. I can’t think of a good example. Hopefully some people will try it for
themselves. I realized on my own that garbage collection simplifies interfaces, &

3Another explanation is ignorance. Most programmers appear to have slept through their
classes.
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one other programmer I know who advanced to using garbage collection made
the same observation independently.

5 Performance

Garbage collection is slower than static allocation or stack-based alocation.
That’s a fact, but it’s not the problem people assume it is.

Let’s say that some program uses a data structure that can be statically
allocated, no run-time allocations or deallocations at all. Then you didn’t need
a garbage collector at all. You didn’t need dynamic allocation at all. Good for
you.

A program with slightly more complex data structures might be able to
use stack allocation, which is a primitive form of dynamic allocation. Again, a
garbage collector wasn’t needed at all, & again, congratulations on writing such
an efficient program.

What about a program that requires dynamically allocated data, but you
can determine at programming time, with statically placed free function calls,
when to deallocate memory? Again, you don’t need a garbage collector at all.4

All of these have been cases in which the programmer was able to statically
determine the times at which to deallocate memory. In the first case, he did
that by not allocating dynamic memory at all. In the second case, he let the
compiler figure it out. In the third case, he wrote explicit code. In all cases,
the programmer “pre-computed” the memory management strategy. In any
case where you need to maximize the work done at run-time5, you want to pre-
compute whatever you can. So the programmer should use these types of data
structures whenever possible.

What if the program requires – absolutely requires – multiple (but not cir-
cular) references to objects? That program must do some kind of run-time
memory management. Reference counting will be just fine. Reference counting
is surprisingly, amazingly fast. It just decrements a counter & deallocates a
block if the counter reaches zero. Implement it yourself (if you have the time
& the budget), or use a garbage collection library that implements reference
counting instead of a more general algorithm.

What if we have a program that relies on data structures that can contain
general graphs.6 Now imagine that program running without a garbage collec-
tor. Its programmers wrote special memory-management functions to handle
the general graph of memory allocations. What memory management algo-
rithms did they code? They coded exactly the kind of algorithm a general
purpose garbage collector uses because those are the only algorithms that can
manage memory allocated in such a general, complex fashion. he nature of

4I would argue that this is the same as the stack allocation case, but the compiler requires
that the amount of memory to allocate from the stack is known at compile-time, so you have
to use dynamic allocation.

5or to minimize the hardware required to do it
6A general graph can contain cycles.
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manual time automatic time iterations program comment

0.0 0.0 0 demo0000.c static allocation

0.0 0.9 56173 demo0001.c individual blocks

0.9 16.3 491 demo0002.c individual lists

0.3 15.1 56173 demo0003.c blocks in random order

Figure 3: Number of seconds for each memory management technique, for each
program

managing memory that can be in a general graph is the same whether you write
custom functions to do it or you use a general-purpose garbage collector. It is
inescapable. It’s not the garbage collector’s fault. If it’s not fast enough, the
problem is that someone chose a data structure that is inappropriate for the
requirements.

My point with all these examples is that the question “Is garbage collection
fast enough for me” is inappropriate. The question should be “Have I chosen
appropriate data structures for my program”. Different data structures require
different amounts of memory-management work at run-time. If you have more
than a trivial amount of memory management work at run-time, you should use
a garbage collector because you already are, whether you use a pre-existing one
or integrate your own into your program.

6 Performance Measurements

Here are the results from some performance measurements I did. A lot of people
will see that garbage collection is slower than manual memory management &
immediately conclude that garbage collection sucks, but a lot of people draw
conclusions without due contemplation. Please be sure you understand the
real question to ask7 before dismissing garbage collection on the basis of these
measurements.

First, the measurements themselves, then a discussion of how they were ob-
tained, their interpretations, & their significances. Each test program performs
some algorithm that allocates & releases memory. It performs the algorithm
twice; once with manual memory management & once with the Boehm col-
lector. Figure 3 shows the number of seconds each program required. Each
program is a line in the table. The first column is the number of seconds that
program’s algorithm required using manual memory management. The second
column shows seconds for garbage collection. Figure 4 is like Figure 3 except
that it shows the number of iterations per second for each algorithm.

The bzip2ed, cpioed archive of the programs is wgcperf.cpio.bz2. To ex-
tract it, run “bzcat wgcperf.cpio.bz2 |cpio -i”. The individual source files
are:

7That question is performance. See Section 5.
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manual rate automatic rate program comment

0.0e+00 0.0e+00 demo0000.c static allocation

2.8e+06 6.5e+04 demo0001.c individual blocks

5.5e+02 3.0e+01 demo0002.c individual lists

1.9e+05 3.7e+03 demo0003.c blocks in random order

Figure 4: Iterations per second for each memory managment technique, for each
program

• wgcperf/COPYING8

• wgcperf/Makefile9

• wgcperf/demo0000.c10

• wgcperf/demo0001.c11

• wgcperf/demo0002.c12

• wgcperf/demo0003.c13

• wgcperf/make-report14

• wgcperf/this.c15

• wgcperf/this.h16

6.1 Interpretation & Significance

In the most extreme of those demo programs (demo0003.c), manual memory
management is about 50 times faster than automatic memory management
(garbage collection). Sounds horrible for garbage collection, but what is the
significance of that?

demo0003.c iterated through its algorithm 56,173 times. Using manual
memory management, the average iteration required 0.3second

56173 ⇒ 5.3×10−6second.
That’s 5.3 microseconds for the mean iteration. Garbage collection is a woeful
fifty times slower, requiring 15.1second

56,173iteration ⇒ 26.88× 10−6 second
iteration .

Think about an interative application with a graphical user interface. If you
use manual memory management, the average operation could take Xsecond+
5.3microsecond. If you use garbage collection, the operation would require

Xsecond + 26.88microsecond. Correct me if I’m wrong, but isn’t 1
3720

th
second

8COPYING
9Makefile

10demo0000.c
11demo0001.c
12demo0002.c
13demo0003.c
14make-report
15this.c
16this.h
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imperceptible to humans? And as X increases from about zero (what it is for
demo0003.c) to a few seconds (for a database query), the difference between
manual memory management’s 5.3 microseconds & garbage collection’s 26.88
microseconds vanishes.

Those calculations assume that the time required for garbage collection
sweeps is distributed evenly across all iterations of the algorithm. In fact, the
garbage collector runs a sweep only periodically. So most allocations happen in
a very short amount of time; only some are lengthened by a garbage collection
sweep. How long is one of those unfortunate allocations?

Maybe the Boehm collector has an interface that allows programs to mon-
itor individual garbage collection sweeps, but I did not use it. By watching
the progress lines of demo0003.c, it looks like there were about five garbage
collection sweeps. If the time required for all the garbage collection sweeps is
distributed evenly among those five allocations (which is not the same as be-
ing distributed evenly among all allocations), & if the total running time of
the entire program is 15.1 seconds, then the average garbage collection sweep
requires less than 15.1second

5sweep ⇒ 3.02 second
sweep . I’ll grant it that a 3 second pause

after I press a button on a GUI could be unsettling to a user, but such a
collection sweep doesn’t happen very often. In demo0003.c, there are about
56,173iteration

5sweep ⇒ 11, 234 iterations between sweeps. Is a user likely to run an
interactive application that long? What’s more, if the garbage collector allows
a program to monitor individual collection sweeps, the interactive application
could display some type of “hang on a moment (less than five seconds)” mes-
sage in a pop-up window during a collection sweep. If such a message happened
about every 11,234 times a user clicked on a button, I don’t think the user would
complain much. If the interactive function required a few seconds, anyway (such
as a database query or generating a report), the garbage collection sweep would
merely double the time required for the function – every 11, 234th time.

Also notice that all the demonstration programs use data structures that
are appropriate for manual memory management, so of course manual memory
management is both faster & easily implemented. What if a program requires
more complex data structures? If the programmer insists on manual memory
management, either those data structures must be abandoned, or the program-
mer must use a garbage collector, whether he uses a general-purpose, optimized,
debugged one or he writes & debugs his own that is built into the application.
That brings me back to two earlier points: Garbage collection makes complex
data structures feasible (Section 2), & it’s not a question of whether garbage
collection is fast enough (Section 5).

7 Interactive Time

“Interactive time” is my own term for requirements that are neither batch nor
real-time. In interactive time, you have a user (human or otherwise) who might
get upset if your program takes too long to do something. It’s not like batch time
(where no one cares how fast any particular step is as long as the whole thing
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gets done in time – overnight or in less than a second or behind the scenes), &
it’s not like real-time in which the requirements state acceptable response time
ranges. In interactive time, your program needs to be fast so as not to annoy
the user.17

Programs with graphical user interfaces (GUIs) are examples of interactive
programs. Some GUI programmers tell me that garbage collection isn’t appro-
priate for their program because the user will get upset if they have to wait
after they click on a button.

Let’s imagine the innards of a GUI app. Maybe the user can enter some
things in some text fields & click a “Do It” button. The app fetches some things
from a database, does some calculation with them, & displays some results in a
window.

How much memory could be allocated & then forgotten each time the user
clicks the “Do It” button? All the GUI widgets, including the text fields, have
life-spans longer than the operation; they last for the entire duration of the
program, so the “Do It” operation doesn’t generate free-able memory from
them. The connection to the database probably doesn’t, either, but let’s err on
the conservative side by assuming each query generates 1 kilobyte of free-able
memory from overhead.

The results of the query will be free-able when we’re done computing some-
thing from them. A big query would be about 1 megabyte, though in most
cases, it’s dumb to request that much data from a database.

The calculation on the query results probably generate less data than the
query results themselves. Let’s call that 1

2 megabyte.
The plotting operation probably generates very little free-able memory be-

cause it’s stuffing data into a GUI object.
By summing all that, it looks like one “Do It” generates about 1 1

2 megabytes
of free-able memory.

A modern desktop computer could easily have hundreds of megabytes of real
memory. The 2-year-old laptop I’m typing on now has 128 megabytes of real
memory. The modern computer also has virtual memory, but let’s ignore that.
Let’s also assume the user is on an old clunker with a measly 64 megabytes &
that half of that is already occupied by programs (ours & others). That leaves
32 megabytes of memory for data.

If each “Do It” consumes 3
2 megabytes of that 32, then the garbage collec-

tor will need to run at least every 21st time. If the data doesn’t have many
pathologically chaotic cycles in it, my own experience shows that the garbage
collector can run in about 1 or 2 seconds (again on my dinky old laptop). The
garbage collector might make a pass more frequently, but if so, then each pass
will take less time.

So for every 21st query, your program takes up to 2 seconds longer. “Un-
acceptable” scream many programmers, but how long did your query take in

17People think real-time means “fast”, but people are ignorant. Consider the program which
fires the deceleration rockets for a ship traveling from the Earth to the Moon. From launch
time, that program has days(!) before it needs to fire those rockets, but when it’s time to fire
those rockets, it has a narrow window in which to do it or people die. That’s real-time.
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the first place? The program fetched a megabyte of data from the database
for god’s sake. That takes about 2 seconds to transmit over an Ethernet LAN.
There must have been processing time in the database (unless you requested a
whole table, which would be dumb); let’s be very kind to the database & harsh
on the garbage collector by calling it 1 second. The analysis of the data must
have taken time; call it 1 second, also. I don’t know much about graphics, but
let’s say the picture could be drawn in 1 second, too.

So the total time for the “Do It” operation, not counting garbage collection,
is 2+1+1+1⇒ 5 seconds. If the garbage collector runs for 2 seconds every 21st

time, then garbage collection increases the mean time for “Do It” by a whopping
0.095 seconds to 5.095 seconds. Worst-case time is 7 seconds; compared to 5
seconds, the cost is probably in the “eh, big deal” range.

What’s more, the example was contrived on the side of pessimism. Every
database interface library I’ve used allows me to fetch a chunk of records at
a time & to re-use the same block of memory for each chunk. Voila! I just
reduced the frequency that the garbage collector runs & also the mean response
time. If I can treat the chunk-holding block of memory as flat (instead of a
bunch of individually allocated objects), each garbage collection pass will be
shorter, possibly becoming unnoticeable.18 If I can allocate the chunk buffer at
the beginning of the program & use the same one for the life of the program,
the garbage collector will almost never run.

Considering that the garbage collector reduced my development time, there
is no reason not to use a garbage collector for this type of program.

Another example of programs that run in interactive time are text editors,
those programs we programmers know almost as well as our spouses. Gnu emacs
runs on Lisp. Yep, it’s a bunch of Lisp functions that run on a custom version
of Lisp. It uses garbage collection. How often do you sit idly at your terminal
while you wait for emacs to free memory? You notice a hiccup once in a while,
less than a second, but even that is infrequent. Could emacs run noticeably
faster if Richard Stalman were to rip-out the garbage collector & hard-code
explicit memory deallocation function calls? I highly doubt it. And doesn’t it
run fast enough, anyway? That’s interactive time, & garbage collection is fine
for it.

8 Custom Garbage Collectors

Maybe a garbage collector could allow a program to tell it when not to run
a sweep. Before a program entered a time-critical section, it might allocate
whatever memory it needed for that section & then notify the garbage collector
not to run until the program exited the section. You can accomplish the same
thing with a more general garbage collector by allocating the memory before the

18My own experience is that the time required for a garbage collection pass increases as
the number of allocated objects increases. If I’ve allocated ten objects, it takes the garbage
collector a certain (unnoticeable) amount of time to examine them, regardless of their size,
but if I have allocated 100,000 objects, it takes more time.
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time-critical section & then being careful not to allocate memory until exiting
the time-critical section. Isn’t that a good technique for any time-critical sec-
tion, garbage collection or not? As with choosing appropriate data structures,
thoughts about alternatives to garbage collection have led full-circle to “If you
write your program intelligently, garbage collection is purely beneficial”.

Some programs might have specific times at which a garbage collection pass
would go unnoticed: a program waiting for user input, or a service that has
recently ended a client session. A garbage collector for that type of program
might allow the program to cause a garbage collection pass to reduce the likeli-
hood that the next allocation will pause for a collection pass. (Remember that
most pauses are only a second or two on a modern computer. Probably not a
problem.)

A garbage collection algorithm might be able to exploit memory usage pat-
terns of some types of programs. Maybe old memory blocks rarely become
collectable, so the garbage collector doesn’t scan them every time. (This is the
essence of generational garbage collection algorithms.) Maybe another garbage
collector could be optimised for programs that release memory in a queue fash-
ion: first allocated is generally first freed.

A garbage collector might do its collection work in a low-priority thread
in the hope that memory management time goes unnoticed, interleaved with
time spent on other computation. Java’s garbage collector does this (most
implementations of it, anyway). Another garbage collector might make a pass
through memory only when absolutely necessary to minimize total time spent
in garbage collection even though each pass through memory could require more
time.

A garbage collector might allow the application program to provide hints
about individual memory blocks. Maybe a program could tell the garbage col-
lector that a memory block does not contain pointers to other memory or that
there are no pointers to bytes within the block, only & always to the beginning
of the block. The Boehm collector does both of these. A garbage collector might
allow hints about when to free a block. I’m concerned that hint mechanisms
would deteriorate in the hands of well-meaning programmers to an abundance of
gratuitous, maybe erroneous, function calls into the garbage collection library,
damaging its performance with a flood of data about each memory block & with
laughably frequent & ironic “run the collector now” requests.

Also, garbage collectors can employ optimization techniques such as caching
blocks of a certain size. Profiling programs could study an application to deter-
mine parameters that tune the garbage collector for the application.

In the presence of languages that are interpreted or that run on virtual
machines, garbage collectors could use techniques that aren’t available to the
memory managers of C & C++ programs. One such technique is garbage col-
lection by copying. I haven’t used it, but it’s simple, & I’ve heard it works well
(though it doubles the amount of memory your program requires).

At this time, there aren’t many (any?) specialized garbage collection li-
braries. That’s because there isn’t much demand. Maybe it’s also because peo-
ple think that garbage collection must be integrated with a language. I’m con-
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vinced that if programmers learned to use garbage collection by default they’d
see that it is great even for these special cases. Currently we have a chicken-
&-egg problem. Because the existing garbage collection solutions are limited,
programmers think that any special case precludes garbage collection. (And
every programmer seems to think his is a special case.)

9 Dead Ends

Here are some ideas about garbage collection that I have considered at one time
or another before concluding they were ill-conceived. Maybe this section is a
log of my own well-meaning foolishness.

9.1 Static Garbage Collection

What if you had a program that studied your application & told you where
to insert calls to free memory (or delete objects, whatever)? It’s probably
technically impossible at this time (the year 2003), but let’s forget about that
& imagine that one exists.

You’d feed your program to this program. It’d analyze your program, prob-
ably while running it like you would run your program in a profiler. Then the
analysis program would insert free calls or delete statements so that your pro-
gram had no memory leaks, no dangling pointers, & no multiple deallocations.
(Yes, yes, a tall order, but for now, just pretend.)

What kinds of results would it produce?
It’d be great for lexically structured deallocations. By “lexically structured”,

I mean those very common cases in which you allocate a block, do something
with it, & then free it. In C & C++, all variables on the stack are lexically
structured allocations, but they are handled automatically by the compiler. I’m
talking about those cases that are conceptually like variables on the stack, but
because the compiler demands that the sizes of items on the stack be known at
run-time, you must call malloc & free explicitly. These cases can be difficult
to detect if you had to separate the allocation & deallocation into different func-
tions.19 Wouldn’t it be cool if the mythical memory analysis program detected
these cases & inserted the free or the delete where appropriate?

In fact, there’s no need for this. In C++, you can put an object on the
stack that is in charge of allocating the memory when it’s constructed & for
deallocating the memory when it’s destroyed. You don’t even need to write
a new class for this purpose; just use class template std::auto ptr. In many
implementations of C, there is a little-known function called alloc, which is like
malloc except that it allocates memory on the stack, & the memory doesn’t
need an explicit clean-up.

So the mythical analysis program doesn’t need to exist to find block-structured
allocation patterns. How about more general usage patterns?

19They should be in the same function whenever possible – which is nearly every time, but
people don’t always do that.
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I suspect that if a block of memory is not used in a way that can be de-
termined to be lexically structured at compile-time, then you need a run-time
system to determine when to deallocate it. I can’t prove that, but I suspect it’s
true. Whether you can do a quick reference-count check or need a more general
garbage collection pass, you have to do some amount of run-time computation.
That means that the mythical static analyzer would need to insert conditional
code at strategic points. Maybe the code could be a quick check of the reference
count followed by a deallocation call if the reference count is zero, or maybe the
code would need to be a call to a full-blown mark-&-sweep algorithm. In any
case, the so-called static deallocation idea has become statically & strategically
placed calls to run the garbage collector.

Where would most such calls go? The time you need to run the garbage
collector is right before you allocate memory. The garbage collector probably
does this anyway, whenever you call its function that allocates memory. In that
function, the garbage collector almost certainly checks to see if it can allocate the
memory. If it can’t, it does a collection pass. Most of the calls the mythical static
analyzer inserted would be right before an allocation request. Heck, it might
want to do that in front of every allocation request, but the garbage collector
does it already. So we lose another need for the mythical static analyzer.

Maybe the mythical static analyzer could look for places in the program to
insert strategic suggestions for the garbage collector to run so that, when the
program tried to allocate memory for real, a delay would be unlikely. There
might be a use for this, but I’ll bet anyone that in most cases, the performance
improvement will be negligible. Also, if the program has situations in which it
needs memory but cannot afford a garbage collection sweep at those times, the
programmer can & should pre-allocate memory so that the program doesn’t need
to call the general purpose memory allocator at these critical times. This applies
whether or not the program uses garbage collection; it’s good programming
practice.

I still think a profiler could analyze memory use patterns & produce param-
eters to tune a garbage collector to the application, but I don’t think there’s
any point to a program that inserted calls to run the garbage collector.

9.2 Smart Pointers

In C++, you can implement a garbage collection library that uses smart pointers
instead of a library that operates “under” new & delete. In fact, I’ve done it
in a library called Giggle ([Sto00]).

That library works fine. The main reason for it was to have a garbage collec-
tion library that allowed me to plug-in different garbage collection algorithms at
run-time so I could compare their performances. Giggle does that very well, but
what I learned after I had finished & used it is that programming with smart
pointers is an error-prone pain in the ass because, no matter how smart your
pointer, you have to get a nude pointer sooner or later so you can do something
with it. A form of pointer leakage occurs. What’s more, either you extract a
nude pointer at nearly every function call, or you customize your functions to
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allow smart pointers. If the only concern were syntax, function templates would
work in most cases, but many compilers don’t support method templates. And
do you really want every damned function in your program to be a template?

Basically, smart pointers are clunky, at least when they are applied to
garbage collection. They aren’t necessary, anyway, because the Boehm col-
lector demonstrates that a garbage collector can operate “under” the level of a
raw memory allocator.

A less biased & far more thorough discussion of the problems with smart
pointers is [Ede92].

9.3 The Ultimate Lazy Garbage Collector

One of the many algorithms I implemented for Giggle was the ultimate lazy
garbage collector. It didn’t collect anything at all until the end of the program.
Sounds silly at first, but what if you know the maximum amount of memory
your program will use, & you know it’ll fit into memory? If that’s your case,
why have the cost of a garbage collection sweep (or even a free or delete) at
run-time? Save it all until the program ends.

I also expected that an ultimate lazy collector might make some optimiza-
tions when it came to calling the destructors on all the objects.

It’s an interesting idea, but what happens is that the program runs like
blazes & then locks-up for a while as it exits because the garbage collector has
to free everything then. The computer isn’t dead, even the program isn’t dead;
it’ll exit eventually. Why go to the trouble, though, when the operating system
would have freed all memory in one, super-fast operation as soon as the program
existed, anyway? The only reason for such an ultimate lazy allocator was to
call destructors on all objects, but look at the cost.

The ultimate lazy constructor helped me realize two things about garbage
collectors. The first was why most garbage collectors just exit when the pro-
gram exists; they don’t bother to find & free memory at that time. The second
was that destructors & garbage collection are separate issues. In fact, “garbage
collection” is a bad, bad term. The term should be “automatic memory man-
agement”.

10 Conclusion

Garbage collection is of huge benefit & negligible cost to programmers every-
where – except C & C++ programmers. While programmers who use other
languages wouldn’t consider living without it, C & C++ programmers consider
garbage collection a new, untested, & questionable technology. Here’s a bit of
history: The first reference to garbage collection I have read was in John Mc-
Carthy’s essay in which he introduced the world to Lisp ([McC60]). That was
1960. Garbage collection goes back to 1960, maybe farther. Since then, it has
been used in innumerable programs, & there has been much research in it. In
the modern world (2003), more languages use garbage collection than not: Java,
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Perl, Python, C-shlep, Visual Basic, Lisp, Scheme, & Java Script. The Unix file
system has reference counting20, so it’s not a stretch to say that the Unix shells
(Bourne, Korn, bash, & others) use garbage collection. Ada doesn’t specify an
exact memory management strategy, but allows an implementation to do its
own memory management, & garbage collection is a possibility.21 Contrast this
with the manual memory-management holdouts: C, C++, Fortran, & COBOL.

To all the C & C++ programmers (including some really good friends)
who keep telling me that garbage collection just can’t work for their high-
performance special case, How can you be sure if you don’t try it? If you
are right, you’re passing up an opportunity to rub my nose in it. If you don’t
try it, you’re the only one who will never know for sure.

There’s no reason not to use an automatic memory manager. It decreases
production costs at a slight increase in run-time costs. A slight increase, not
even noticeable in most programs. Garbage collection is already widely used,
& as with function calls, high-level languages, & other improvements in the
practice of making software, programmers will rely on it more as the cost of
run-time decreases & the cost of programmer time increases.
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