
Notes about VBScript

Gene Michael Stover

updated 5 October 2003

Copyright c© 2003 by Gene Michael Stover. All rights reserved. Permission to

copy, transmit, store, & view this document unmodified & in its entirety is granted.

Contents

1 Introduction 1

2 Syntax & Semantic Gotchas 1

2.1 Strictly Defined Variables . 1
2.2 Assignments . 1
2.3 Standard I/O . 2

3 Fun with Visual Basic Script & Internet Explorder 3

3.1 vbsie000.html . 3
3.2 vbsie001.html . 3

1 Introduction

These are random, informal, & not necessarily informative notes about Mi-
crosoft’s Visual Basic Script (VBScript).

2 Syntax & Semantic Gotchas

2.1 Strictly Defined Variables

To make VBScript complain if you forget to declare a variable, use “Option
Explicit” near the beginning of your program.

2.2 Assignments

To assign an object reference to a variable, you must use Set. Like this:

1

REM Declare the variable because it’s good form.

Dim fso

REM Create a File System Object & bind it to

REM ’fso’. We must use Set, not a plain

REM assignment.

Set fso = CreateObject ("Scripting.FileSystemObject")

If you use a plain assignment to bind an object reference to a variable, you’ll
actually bind Null to the variable. You won’t get a syntax error or a run-time
error, so it’s a fairly insidious problem.

To assign a datum other than an object reference to a variable, use a plain
assignment, like this:

Dim str

str = "Hello " & "there."

If you attempt to assign a non-object datum to a variable with a Set, you’ll
get a run-time error.

2.3 Standard I/O

You can read & write the standard I/O streams from VBScript if cscript is
your VBScript interpreter. (It doesn’t work for wscript.) Here’s how:

REM Declare our variables, to be in good form.

Dim fso, stdin, stdout, stderr

REM Need to create a File System Object. It

REM seems that a lot of programs need a File

REM System Object.

Set fso = CreateObject ("Scripting.FileSystemObject")

REM Finally, just get the streams & bind them

REM to those variables we created.

REM Notice that the argument to GetStandardStream

REM corresponds to the Unix/POSIX file

REM descriptors.

Set stdin = fso.GetStandardStream (0)

Set stdout = fso.GetStandardStream (1)

Set stderr = fso.GetStandardStream (2)

REM Now we can write to stdout or stderr, or

REM we can read from stdin. Here’s an example

REM of output.

stdout.WriteLine "Hello, VBScript."

stderr.WriteLine "I could write an error here."

2

This doesn’t work when wscript is your interpreter. With wscript, FileSystemObject.GetStandardStrea
returns Null, so you’ll get an error when you try to use the stream, not when
you create it. If you run a *.vbs program from the command line by typ-
ing its name, you’ll probably get wscript as your interpreter. If you want to
use standard I/O streams, you must run your *.vbs program explicitly with
cscript.

3 Fun with Visual Basic Script & Internet Ex-

plorder

3.1 vbsie000.html

vbsie000.html is a Visual Basic Script program that prints some hard-coded
paragraphs to Document in window onload. The idea is to see where the text
printed to the Document fits into the Web page. Does it go in the HEAD?
At the beginning of the BODY? (vbsie000.html suggests that it replaces the
entire BODY. Also, it messes up the browser’s history list.)

3.2 vbsie001.html

vbsie001.html is like vbsie000.html except that it creates a Window with Document.open

& writes the hard-coded HTML paragraphs to that. (Running vbsie001.html
suggests that text written to the new window doesn’t show on the browser.
What’s more, the text that was hard-coded into the HTML page does not
show.)

vbsie002.html Uses nested loops in VBS to write ten paragraphs of lots of
words (which are just numbers). Each word is transmitted on a line by itself.

vbsie003.html. During the window’s OnLoad, displays a message box. Visit-
ing vbsie003.html demonstrates that message boxes do not mess up the browser’s
history list. Also, vbsie003.html does not print anything to the Document ob-
ject, so the regular HTML text in that page displays correctly.

vbsie004.html shows a message box with the Window.clientInformation

property. It turns out that the client information property isn’t very interesting.
When I’ve run it, it just holds &

objectNavigator

&.
vbsie005.html Creates a new window with Window.open, except the the VBS

program is part of the Window, so I just call “open ()”. vbsie005.html does
indeed create a new window, though it doesn’t put any text into it.

vbsie006.html tries writing “Hello, window” to the new window’s Document.
Still doesn’t print anything in the new window. In my VBS book (page 169),
it says you must call Document.write when the window is created. So maybe
what you must do is open the new window to an URL that contains a web page.
The URL’s page might even contain a VBS program called window onload.

3

vbsie007.html

End.

4

