How Expensive is TCP’s Keep-Alive Feature?

Gene Michael Stover

created Saturday, 25 October 2003
updated Thursday, 30 October 2003

Copyright © 2003 by Gene Michael Stover. All rights reserved. Permission to
copy, store, & view this document unmodified & in its entirety is granted.

Contents
1 Introduction 1
2 The Test Procedure 1
3 Raw Data 2
4 Analysis 4
4.1 Consolidate the trials. 4
4.2 Comparetherates, 4
5 Alternatives to Keep Alive 5
6 Conclusion 6
7 Other File Formats 7

1 Introduction

A friend & programmer once told me that TCP’s Keep Alive feature consumed
too much bandwidth to be applicable to the application we were writing at the
time. I didn’t have any performance statistics on TCP’s Keep Alive feature at
the time, but I've finally gotten around to doing some experiments of my own.
Here’s what I did & the results I found.

2 The Test Procedure

To compare the performance of TCP with & without Keep Alive enabled, I
wrote two programs: a client & a server.

The server opens two sockets on randomly selected TCP ports. It prints
those ports to standard output. On the first port, it explicitly disables Keep
Alive, which probably doesn’t alter the socket’s behaviour from the default. On
the second port, it explicitly enables Keep Alive.

The client program needs to know the port number for the server, the number
of sockets to create, & whether or not to enable Keep Alive before connecting
to the server. It learns these things from command line options. The client
creates all the sockets, enables Keep Alive on all of them if the command line
options indicate to do so, & then connects to the server. Then it sends a bunch
of packets over one of the sockets, allowing the others to idle so they will send
TCP Keep Alive packets. The client counts the packets & tracks the time, then
prints the performance statistics.

The client exits after sending all its packets, but the same server can be used
for many client runs.

I ran the client for many combinations of “number of sockets” and “amount of
time to run”. I ran them from a shell script called bin/speed, saved the output
to a temporary file, & then copied the temporary file into this document.’

The source code for the server, the client, & the shell script is in

e keepalive-1.cpio.bz22, which can be extracted by piping it through “bzcat
| cpio”, or

e keepalive-1.tar.gz3, which can be extracted by piping it through “gzcat

[tar xf -”.

You just need one of those archives. Their conents are identical; only the
archive formats differ.

I ran the client on Linux 2.2 on a 450 MHz Pentium something-or-other. I
ran the server on Linux 2.2 on a 750 MHz Pentium something-or-other. The two
computers were on a 100 megabit-per-second Ethernet LAN. Neither computer
was doing anything strenuous at the time other than this test.

3 Raw Data

Here are the raw, unsorted, unanalyzed results from a run of the bin/speed pro-
gram. From its output, I removed the lines that were not table rows for IMTEX.
I also numbered them. Other than that, it’s just a table of what happened,
unaltered, unsorted, un-anything. We’ll analyze it next.

T had to do some minor edits to massage the output into a IATEX table. To do some
operations on the data, I had to edit it again into a data structure for Lisp. If I did it again, I
think it would have been easier for the client program to write data in a format that Lisp could
read trivially. I'd copy the output into Lisp & use some functions to produce the different
tables for IATEX.

2http:/ /lisp-p.org/tka/keepalive-1.cpio.bz2

3http://lisp-p.org/tka/keepalive-1.tar.gz

trial id | keep-alive? | sockets | packets written | seconds | packet/second | select max
1 no 1 197918 17 1.164e+04 1
2 yes 1 194373 17 1.143e+-04 1
3 no 1 195081 17 1.148e+04 1
4 yes 1 195130 17 1.148e+-04 1
5 no 1 190313 17 1.119e+04 1
6 yes 1 192565 17 1.133e+04 1
7 no 7 189586 17 1.115e+04 1
8 yes 7 200820 17 1.181e+04 1
9 no 7 206591 17 1.215e+04 1
10 yes 7 204046 17 1.200e+-04 1
11 no 7 204298 17 1.202e+-04 1
12 yes 7 200702 17 1.181e+04 1
13 no 17 199213 17 1.172e+-04 1
14 yes 17 192651 17 1.133e+4-04 1
15 no 17 198799 17 1.169e+-04 1
16 yes 17 194221 17 1.142e+04 1
17 no 17 190112 17 1.118e+04 1
18 yes 17 195298 17 1.149e+04 1
19 no 51 172105 17 1.012e+-04 1
20 yes 51 134480 17 7.911e+03 1
21 no 51 172830 17 1.017e+04 1
22 yes 51 131408 17 7.730e+03 1
23 no 51 176926 17 1.041e+04 1
24 yes 51 133850 17 7.874e+03 1
25 no 1 1521564 125 1.217e+04 1
26 yes 1 1504186 125 1.203e+4-04 1
27 no 1 1482259 125 1.186e+04 1
28 yes 1 1510831 125 1.209e+-04 1
29 no 1 1516938 125 1.214e+-04 1
30 yes 1 1518025 125 1.214e+04 1
31 no 7 1486686 125 1.189e+-04 1
32 yes 7 1442189 125 1.154e+-04 1
33 no 7 1458905 125 1.167e+4-04 1
34 yes 7 1459590 125 1.168e+04 1
35 no 7 1443856 125 1.155e+4-04 1
36 yes 7 1466546 125 1.173e+04 1
37 no 17 1418704 125 1.135e+4-04 1
38 yes 17 1375353 125 1.100e+-04 1
39 no 17 1400023 125 1.120e+04 1
40 yes 17 1381440 125 1.105e+-04 1
41 no 17 1444769 125 1.156e+-04 1
42 yes 17 1363319 125 1.091e+-04 1
43 no 51 1292572 125 1.034e+4-04 1
44 yes 51 1156970 125 9.256e+-03 1
45 no 51 1292853 125 1.034e+4-04 1
46 yes 513 1001461 125 8.012e+03 1
47 no 51 1281842 125 1.025e+4-04 1
48 yes 51 1004165 125 8.033e+03 1
49 no 1 4293899 361 1.189e+-04 1
50 yes 1 4303670 361 1.192e+04 1
51 no 1 4265132 361 1.181e+04 1
52 yes 1 4228313 361 1.171e+04 1
53 no 1 4279627 361 1.185e+-04 1
54 yes 1 4218255 361 1.168e+-04 1
55 no 7 4278727 361 1.185e+-04 1
56 yes 7 4305502 361 1.193e+-04 1
57 no 7 4268443 361 1.182e+-04 1

keep-alive? | sockets | packets | seconds | rate (p/s)
NO 1 | 42353431 3519 1.204E+4

YES 1| 42128709 3519 1.197TE+4

NO 7 | 41571530 3519 1.181E+4

YES 7 | 41869223 3519 1.190E+4

NO 17 | 40338885 3519 1.146E+4

YES 17 | 40112719 3519 1.140E+4

NO 51 | 36194404 3519 1.029E+4

YES 51 | 30577331 3519 8.689E+3

Figure 1: A table of the trials, reduced according to keep-alive setting & number
of sockets.

4 Analysis

4.1 Consolidate the trials

For each combination of keep-alive, sockets, & seconds, I ran three trials. Maybe
that was over-kill. To reduce the number of rows, let’s consolidate them accord-
ing to keep-alive, & sockets. The new table will have a column for the total
number of packets sent by all trials for that keep-alive setting & that number
of sockets. It’ll also have a column for the entire number of seconds spent by
those trials & for the cumulative rate in packets-per-second, of all those trials.

For example, we take all the trials for no keep-alive & one socket, & we
create one row for them. The trials with no keep-alive & one socket are 1, 3, 5,
25, 27, 29, 49, 51, 53, 73, 75, & 77. We sum those trials to produce a row for no
keep-alive, one socket, in which the total number of packets sent is 42353431,
the total number of seconds spent sending them is 3519 second, & the rate is
1.204 x 104 packet,

The new t;ble is in Figure 1.

Notice that the rate with keep-alive enabled is almost always slower than the
rate without it, but with seven sockets, the rate with keep-alive was actually a
little faster. I presume keep-alive didn’t actually increase the rate. This suggests
that the bandwidth consumed by keep-alive data was less than the bandwidth
consumed by some factor I didn’t measure. If so, that means that, with seven
or so sockets, keep-alive will affect an application’s performance a lot less than
other inefficiencies in your application might. In other words, it’s an argument
that keep-alive is fast enough, at least for about seven sockets or less.

4.2 Compare the rates

Let’s make a new table to compare the rates between the keep-alive settings for
a given number of sockets. The new table has a row for each number of sockets
(1, 7,17, & 51). It shows the number of packets sent by all the non-keep-alive
trials for that number of sockets, the number of packets sent by the keep-alive
trials for that number of sockets, & the ratio between the keep-alive packet

sockets | packets with KA | packets w/o KA | relative w/o
1 42353431 42128709 0.995

7 41571530 41869223 1.007

17 40338885 40112719 0.994

51 36194404 30577331 0.845

Figure 2: A table comparing the rate of sending packets when keep-alive is
enabled to the rate of sending packets when keep-alive is disabled.

count & the non-keep-alive packet count. (We can drop the number of seconds
because it is always the same.) The new table is in Figure 2.

From Figure 2, it looks like the cost of keep-alive is negligible until somewhere
after 17 sockets. Remember that these tests were a sort of worst case in that
one socket was writing continually while the other sockets idled. If the other
sockets had been transmitting data, they might not have been sending keep-alive
packets, so the cost of keep-alive in that case would have been less.

Nevertheless, once we reach 51 sockets, with one of them sending & the other
50 idling, the cost of keep-alive is over 15 percent, which could be significant for
many applications.

5 Alternatives to Keep Alive

Is TCP’s Keep Alive feature ever necessary? No. In normal use, even without
keep-alive enabled, you’ll be notified that a connection is closed or broken if you
try to write to your socket for that connection. So if you are going to write to
a socket continuously or frequently during the life of the connection, you don’t
need keep-alive on that socket at all.

What if you are only going to read from the socket? If the connection breaks
or the other process closes its end for whatever reason, you won’t learn about
it unless you have keep-alive enabled or you try to write to that socket.

You can implement a keep-alive feature at the application level in a way
that is more acceptable to your application’s performance requirements. It
works well if your appliction protocol over the TCP connection has a concept
of packets (or message or frame or whatever you want to call it). Create a Null
packet type that the receiver is supposed to ignore & can accept at any point
in the conversation. When one of the conversants notices that it hasn’t received
any packets from the other end in T time, it should send a Null packet. If
the connection has been lost, that process will hear about it soon after that;
otherwise, the connection is up, the process which receives the Null packet will
happily ignore it, & communication can continue. You can choose the size of T
to suit your application. It could be seconds, minutes, fortnights, or whatever
else is appropriate. In fact, the keep-alive feature simply does this for you at
the TCP level so you don’t need to think about it, & with a timer of about 45
seconds (77, page 40).

1. Send your Null packet over the socket.

2. In your event loop, include the socket in the set of readers you give to
select.

3. If the socket is closed, select will soon give you a read indication on it.
When you try to read from that socket, you’ll get 0 bytes. (That read
operation will be non-blocking.) You can close the socket.

Figure 3: Pseudocode that integrates a connection test with an event loop

You could turn the problem inside-out & use a lazy approach. Instead of
testing connections at regular intervals, decide how many extant sockets your
program can afford. Call this number N, the maximum Number of extant sock-
ets. It might be ten or 50 or 100 or whatever floats your boat as long as it is
less than the maximum number of sockets your operating system can deliver to
a single process. Whenever a server accepts a new connection & the number of
sockets in use is at least N, scan the list of existing sockets & send Null packets
to test them. Close any that are no longer connected. The client (or whatever
you want to call the program that originates the connections) might still need
to use a timer.

There are twists on this technique. When it’s time to test the connections,
instead of testing all sockets, the server might test only those that haven’t been
used in T time. Another way to avoid scanning the entire list of sockets is to
test & close until the number of extant sockets is less than N. If there is a chance
you won’t scan the entire list of sockets, it might be a good idea to sort them,
starting from least recently used or the oldest. Otherwise, you might end up
with a socket whose file descriptor is very large & whose connection is dead, but
you never scan it because it’s last on your list of sockets to scan, & you always
manage to get the number of extant sockets to less than N before you read this
high-numbered socket.

Testing a socket for a dead connection is not a very expensive operation.
Send your Null packet over the socket, then try to read from the socket. If the
connection is closed or dropped, read will return 0, & you can close the socket.*
Pseudocode for a more event-driven model is in Figure 3.

6 Conclusion

Is TCP’s Keep Alive feature too slow? That’s impossible to answer without
defining “too slow” for a particular application, but it looks like at about ten
connections or less, it consumes less than five percent of the bandwidth, but at
about 50 connections, it consumes over 15 percent. My gut feeling is that five

4Closed connections, dropped connections, end-of-file, & a few errors are the only situations
in which read returns zero.

percent isn’t too much to ask from most applications, but fifteen percent is a
lot. Does your application expect ten simultanous connections or fifty?

An alternative to TCP’s Keep Alive feature is a similar feature implemented
at the application level. Since it is simple to implement for many applications,
& its performance cost can be tailored to the application’s performance require-
ments, & the performance cost can be very low (by using a lazy technique), a
Keep Alive feature at the application level may be a better choice than TCP’s
Keep Alive feature.

7 Other File Formats

This document is available online in several formats:
e HTML is at http://lisp-p.org/tka/.
e PostScript is http://lisp-p.org/tka/tka.ps.
e DVI is http://lisp-p.org/tka/tka.dvi.
There are no plans to make it available in Pointless Document Format

(PDF).
The source files are also available online:

e http://lisp-p.org/tka/keepalive-1.cpio.bz2, 117982 bytes

e http://lisp-p.org/tka/keepalive-1.tar.gz, 176142 bytes

References

