The Truth about Type Safety in Programming
Languages

Gene Michael Stover

created 12 March 2004
updated 14 April 2004

Copyright © 2004 Gene Michael Stover. All rights reserved. Permission to copy,
store, & view this document unmodified € in its entirety is granted.

Contents
1 Introduction 1
2 Two Kinds of Type Safety 1
3 Summary of Languages 3
3.1 Notes about that table 3
4 Conclusion 4
A Pencils & Battleshipts 4
B Manifest Typing 4
C Other File Formats 5

1 Introduction

“C++ is a type-safe language, & Lisp isn’t.” 1 used to believe that until
Brian T. Rice, a Lisp programmer in Seattle, explained the truth to me. Here’s
what he said, in my own words.

2 Two Kinds of Type Safety

When programmers talk about type safety, they usually mean compile-time type
safety. C++ (& C, Java, Ada, Pascal, & lots of other languages) have that.

Languages that don’t have compile-time type safety include Lisp, Smalltalk,
Perl, old-fashioned BASIC!, Self, & others.

There is also run-time type safety. It is no less important than compile-
time type safety, but programmers discussing type safety don’t often think of
run-time type safety.

C & C++ don’t have run-time type safety. In either of those languages, you
can (attempt to) convert any type to any other. Here are some examples:

You can convert an integer to a pointer:

/%
* example of unsafe run-time type-cast in C
*/
void
foo O {
int i;
void *p;

p = (void *) i;
}

You can convert between Pencils, Battleships, & Vectors:

/*
* example of unsafe type-conversion
*/

class Pencil {

public:
virtual void erase ();

/* other members (functions & data)
* might go here */
};

class Battleship {
public:
virtual void peel ();

/* other members might go here */

};

void

UnsafePencil2Battleship (Pencil const *pencil,
Battleship *battleship)

{

LIf you remember BASIC in which every line was numbered, you remember old-fashioned
BASIC.

/* BAD CODE: This is an unsafe & horrible thing
* to do, & it would probably fail. It’s just
* wrong! */
memcpy (battleship, pencil, sizeof *battleship);
X

void
UnsafeBattleship2VectorOfInt (Battleship const *battleship,
std::vector<int> *v)
{
/* BAD CODE: This is a type-conversion error
* & a nightmare. Don’t do this. */
memcpy (v, battleship, sizeof *v);

}

I can hear the C++ programmers grimmacing now, maybe even shouting
“That’s crap code! It won’t work! Only a horrible programmer would write it!”
Nevertheless, the language allows it. The language is not type-safe at run-time.

A language that has strong run-time type safety would not allow such a con-
version. In Java, I guess you could try to cast a Pencil reference to a Battleship
reference, but the system would toss a type-error exception at you. In Lisp,
there isn’t any notation to do such a terrible thing at all.

3 Summary of Languages

Here’s a table that relates some languages to their compile-time type safety &
run-time type safety.

language | compile-time? | run-time?
Ada yes yes*
assembly yes™* no
C yes no

C++ yes no
Java yes yes

Lisp no yes
Pascal yes yes*
Perl no sort of*

Self no yes
Smalltalk no yes

3.1 Notes about that table

Pascal I don’t think traditional, true Pascal keeps much type information at
run-time, but it doesn’t offer any way to do unsafe conversions. Combined
with its strong compile-time type safety, I think gives Pascal type safety
at run-time by default.

Ada I believe — but I'm not sure — that Ada is like Pascal with respect to type
safety. Ada might keep more type information at run-time.

assembly It depends on your assembler & your processor. Last I used Mi-
crosloth 80x86 Assembler (MASM), it actually had some compile-time
type safety features. Like it would warn you if you tried to CALL a label
in the data segment. It’s clearly very weak type safety, but it is a form of
type safety.

Perl Perl’s type system is interesting. It tries to figure out what type you
need & what type you have & do a conversion, & I think the conversions
often go through a string form. (The string form might even be explicit in
the language specification.) So Perl almost has a form of manifest typing
(Section B). It isn’t manifest typing, & it’s a stretch to call it manifest
typing, but it’s sort of kind of almost somewhat reminiscent of manifest

typing.

4 Conclusion

Type safety is not a single dimension. It has at least two dimensions: compile-
time & run-time. Ironically, two languages which are considered type-safe (C &
C++) have no type safety at run-time.

The lack of type safety in C & C++ is probably useful for low-level pro-
gramming, bit-twiddling. That’s what C is for. It’s a dangerous feature of a
language that’s used to write large applications.

A Pencils & Battleshipts

A friend told me about an article he had read about type-safety & collections.
Maybe it was about parameterized types in general in C+4. The article’s author
had said there would never be a need for a collection of pencils & battleships.

I pointed out that the world is a collection of pencils, battleships, & some
other things.

B Manifest Typing

If a programming language gives types to values, not to variables, we say that
programming language uses manifest typing. Other programming languages do
not use manifest typing. (I don’t know what their type systems are called, other
than “not manifest typing”.)

Lisp uses manifest typing. In Lisp, variables do not have types. Any variable
can hold any type of value. Values do have types.

C & Ada do not use manifest typing. In C & Ada, variables have types &
are allowed to hold only values of their same types.

Notice that in a purely object oriented language in which there is one class
hierarchy with one root, that OO type system effectively becomes manifest
typing. So if a programming language requires all values to be objects, & if all
classes are direct or indirect classes of a single root class, that language offers
manifest typing as a side-effect. Smalltalk is one such language.
In ANSI Common Lisp (|Gra96,)], Paul Graham says that Lisp is manifestly
typed because values have types but variables do not.
There is a brief corroborative definition of manifest typing at http://www.lisp.org/table/types.htm.
There is yet another brief definition of manifest typing at http://www.cs.auc.dk/ normark/prog3-
02/html/notes/fu-intr-1_themes-type-section.html.
According to the definition of manifest typing on Wiki?, manifest typing has
the opposite definition I've given here. Maybe the Lisp community uses the
term one way & the non-Lisp programming community uses it the other way.
Maybe this suggests that we should use a different term for these concepts.
Webster’s Ninth Collegiate Dictionary didn’t decide the issue for me. Here
are the three definitions in that volume for “manifest”:

1. adj. 1 : readily perceived by the senses & esp. by the sight. 2 : easily
understood or recognized by the mind : OBVIOUS

2. vt : to make evident or certain by showing or displaying

3. m : MANIFESTATION, INDICATION 2 : MANIFESTO 3 : a list of passengers
or an invoice of cargo for a ship or plane

These definitions don’t help much. The first two might suggest that types
known at compile-time are manifest because they are easily recognized & evident
when a programmer reads the source code. The first two definitions could
equally be applied to type systems such as Lisp’s because the types of values
are easily recognized & evident to the run-time system whereas types declared
at compile-time are implicit at run-time.

The third definition, that of a manifest as a list of goods, could be applied to
compile-time type systems because the declarations of variables & their types
could be interpreted as a manifest, but the information about values & their
types at run-time is a manifest for the run-time system.

I'd say we need new terms for the two kinds of type systems. Maybe
“compile-time types” & “run-time types”.

C Other File Formats

This document is available in multi-file HTML format at http://lisp-p.org/tat/.
This document is available in DVI format at http://lisp-p.org/tat/tat.dvi.
This document is available in PostScript format at http://lisp-p.org/tat/tat.ps.

2http://c2.com/cgi/wiki

References

[Gra96] Paul Graham. ANSI Common Lisp. Prentice Hall, Englewood Cliffs,
New Jersey 074623, USA, 1996. ISBN 0-13-370875-6.

